Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
EMBO J ; 43(14): 2878-2907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816652

ABSTRACT

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.


Subject(s)
Antigens, Ly , Receptors, Antigen, T-Cell, gamma-delta , Tumor Necrosis Factor Receptor Superfamily, Member 7 , Animals , Mice , Antigens, Ly/metabolism , Antigens, Ly/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Interleukin-27/metabolism , Interleukin-27/genetics , Cell Differentiation/immunology , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
2.
Nature ; 594(7863): 430-435, 2021 06.
Article in English | MEDLINE | ID: mdl-34079124

ABSTRACT

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Subject(s)
Cell Competition , Cell Transformation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Esterases/metabolism , Genes, APC , Mutation , Adenoma/genetics , Adenoma/pathology , Adenomatous Polyposis Coli Protein/genetics , Animals , Cell Competition/genetics , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Culture Media, Conditioned , Disease Progression , Esterases/antagonists & inhibitors , Esterases/genetics , Female , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/metabolism , Organoids/pathology , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway
3.
Mol Cell ; 66(4): 517-532.e9, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28525743

ABSTRACT

Autophagy is a membrane-trafficking process that directs degradation of cytoplasmic material in lysosomes. The process promotes cellular fidelity, and while the core machinery of autophagy is known, the mechanisms that promote and sustain autophagy are less well defined. Here we report that the epigenetic reader BRD4 and the methyltransferase G9a repress a TFEB/TFE3/MITF-independent transcriptional program that promotes autophagy and lysosome biogenesis. We show that BRD4 knockdown induces autophagy in vitro and in vivo in response to some, but not all, situations. In the case of starvation, a signaling cascade involving AMPK and histone deacetylase SIRT1 displaces chromatin-bound BRD4, instigating autophagy gene activation and cell survival. Importantly, this program is directed independently and also reciprocally to the growth-promoting properties of BRD4 and is potently repressed by BRD4-NUT, a driver of NUT midline carcinoma. These findings therefore identify a distinct and selective mechanism of autophagy regulation.


Subject(s)
Autophagy , Carcinoma, Pancreatic Ductal/metabolism , Lysosomes/metabolism , Nuclear Proteins/metabolism , Pancreatic Neoplasms/metabolism , Transcription Factors/metabolism , Transcription, Genetic , AMP-Activated Protein Kinases/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Chromatin/genetics , Chromatin/metabolism , Down-Regulation , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Energy Metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lysosomes/pathology , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Proteins/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Aggregates , Protein Binding , Proteolysis , RNA Interference , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transcription Factors/genetics , Transfection
4.
J Hepatol ; 78(5): 1028-1036, 2023 05.
Article in English | MEDLINE | ID: mdl-36702176

ABSTRACT

BACKGROUND & AIMS: Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. METHODS: We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. RESULTS: We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/ß-catenin signalling and related metabolomic disturbance. CONCLUSIONS: We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. IMPACT AND IMPLICATIONS: Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally.


Subject(s)
Focal Nodular Hyperplasia , Liver Regeneration , Male , Female , Humans , Liver Regeneration/physiology , Hepatocytes/metabolism , Liver/metabolism , Homeostasis , Cell Proliferation , Axin Protein/genetics
5.
Thorax ; 78(10): 1019-1027, 2023 10.
Article in English | MEDLINE | ID: mdl-36808087

ABSTRACT

BACKGROUND: Tracheostomies in children are associated with significant morbidity, poor quality of life, excess healthcare costs and excess mortality. The underlying mechanisms facilitating adverse respiratory outcomes in tracheostomised children are poorly understood. We aimed to characterise airway host defence in tracheostomised children using serial molecular analyses. METHODS: Tracheal aspirates, tracheal cytology brushings and nasal swabs were prospectively collected from children with a tracheostomy and controls. Transcriptomic, proteomic and metabolomic methods were applied to characterise the impact of tracheostomy on host immune response and the airway microbiome. RESULTS: Children followed up serially from the time of tracheostomy up to 3 months postprocedure (n=9) were studied. A further cohort of children with a long-term tracheostomy were also enrolled (n=24). Controls (n=13) comprised children without a tracheostomy undergoing bronchoscopy. Long-term tracheostomy was associated with airway neutrophilic inflammation, superoxide production and evidence of proteolysis when compared with controls. Reduced airway microbial diversity was established pre-tracheostomy and sustained thereafter. CONCLUSIONS: Long-term childhood tracheostomy is associated with a inflammatory tracheal phenotype characterised by neutrophilic inflammation and the ongoing presence of potential respiratory pathogens. These findings suggest neutrophil recruitment and activation as potential exploratory targets in seeking to prevent recurrent airway complications in this vulnerable group of patients.


Subject(s)
Proteomics , Tracheostomy , Child , Humans , Tracheostomy/adverse effects , Quality of Life , Trachea , Inflammation/etiology
6.
BJU Int ; 131(2): 236-243, 2023 02.
Article in English | MEDLINE | ID: mdl-35844167

ABSTRACT

OBJECTIVES: To test for evidence of statin-mediated effects in patients with castration-resistant prostate cancer (CRPC) as post-diagnosis use of statins in patients with prostate cancer is associated with favourable survival outcome. PATIENTS AND METHODS: The SPECTRE trial was a 6-weeks-long proof-of-concept single-arm Phase II treatment trial, combining atorvastatin and androgen deprivation therapy in patients with CRPC (regardless of metastatic status), designed to test for evidence of statin-mediated effects in patients with CRPC. The primary study endpoint was the proportion of patients achieving a ≥50% drop from baseline in prostate-specific antigen (PSA) levels at any time over the 6-week period of atorvastatin medication (PSA response). Exploratory endpoints include PSA velocity and serum metabolites identified by mass spectrometry . RESULTS: At the scheduled interim analysis, one of 12 patients experienced a ≥50% drop in PSA levels (primary endpoint), with ≥2 patients satisfying the primary endpoint required for further recruitment. All 12 patients experienced substantial falls in serum cholesterol levels following statin treatment. While all patients had comparable pre-study PSA velocities, six of 12 patients showed decreased PSA velocities after statin treatment, suggestive of disease stabilization. Unbiased metabolomics analysis on serial weekly blood samples identified tryptophan to be the dominant metabolite associated with patient response to statin. CONCLUSIONS: Data from the SPECTRE study provide the first evidence of statin-mediated effects on CRPC and early sign of disease stabilization. Our data also highlight the possibility of altered tryptophan metabolism being associated with tumour response.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prostate-Specific Antigen , Atorvastatin/therapeutic use , Androgen Antagonists/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Tryptophan
7.
Gut ; 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477863

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

8.
J Cell Sci ; 132(11)2019 05 31.
Article in English | MEDLINE | ID: mdl-31152052

ABSTRACT

Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actin Cytoskeleton/physiology , Biomechanical Phenomena/physiology , Cell Movement/physiology , MAP Kinase Signaling System/physiology , Melanoma/physiopathology , Anisotropy , Cell Line, Tumor , Cell Plasticity/physiology , Cell Proliferation , Focal Adhesions/physiology , Humans , Micropore Filters , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism
9.
Br J Cancer ; 122(6): 868-884, 2020 03.
Article in English | MEDLINE | ID: mdl-31942031

ABSTRACT

BACKGROUND: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. METHODS: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. RESULTS: We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. CONCLUSION: We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype.


Subject(s)
Claudins/metabolism , Fatty Acids/metabolism , Metabolomics/methods , Proto-Oncogene Proteins c-myc/genetics , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Humans , Transfection
10.
EMBO J ; 34(18): 2321-33, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26240067

ABSTRACT

Wnt pathway deregulation is a common characteristic of many cancers. Only colorectal cancer predominantly harbours mutations in APC, whereas other cancer types (hepatocellular carcinoma, solid pseudopapillary tumours of the pancreas) have activating mutations in ß-catenin (CTNNB1). We have compared the dynamics and the potency of ß-catenin mutations in vivo. Within the murine small intestine (SI), an activating mutation of ß-catenin took much longer to achieve Wnt deregulation and acquire a crypt-progenitor cell (CPC) phenotype than Apc or Gsk3 loss. Within the colon, a single activating mutation of ß-catenin was unable to drive Wnt deregulation or induce the CPC phenotype. This ability of ß-catenin mutation to differentially transform the SI versus the colon correlated with higher expression of E-cadherin and a higher number of E-cadherin:ß-catenin complexes at the membrane. Reduction in E-cadherin synergised with an activating mutation of ß-catenin resulting in a rapid CPC phenotype within the SI and colon. Thus, there is a threshold of ß-catenin that is required to drive transformation, and E-cadherin can act as a buffer to sequester mutated ß-catenin.


Subject(s)
Cadherins/metabolism , Cell Transformation, Neoplastic , Colonic Neoplasms , Mutation , Neoplasm Proteins , Wnt Signaling Pathway , beta Catenin , Animals , Cadherins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
11.
Proc Natl Acad Sci U S A ; 113(29): 8290-5, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27357679

ABSTRACT

Prostate cancer (CaP) is the most common adult male cancer in the developed world. The paucity of biomarkers to predict prostate tumor biology makes it important to identify key pathways that confer poor prognosis and guide potential targeted therapy. Using a murine forward mutagenesis screen in a Pten-null background, we identified peroxisome proliferator-activated receptor gamma (Pparg), encoding a ligand-activated transcription factor, as a promoter of metastatic CaP through activation of lipid signaling pathways, including up-regulation of lipid synthesis enzymes [fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), ATP citrate lyase (ACLY)]. Importantly, inhibition of PPARG suppressed tumor growth in vivo, with down-regulation of the lipid synthesis program. We show that elevated levels of PPARG strongly correlate with elevation of FASN in human CaP and that high levels of PPARG/FASN and PI3K/pAKT pathway activation confer a poor prognosis. These data suggest that CaP patients could be stratified in terms of PPARG/FASN and PTEN levels to identify patients with aggressive CaP who may respond favorably to PPARG/FASN inhibition.


Subject(s)
Fatty Acid Synthase, Type I/metabolism , PPAR gamma/metabolism , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Humans , Lipid Metabolism , Male , Mice , Middle Aged , PPAR gamma/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Transposases
12.
Nature ; 477(7363): 225-8, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21849978

ABSTRACT

Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.


Subject(s)
Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Genes, Lethal/genetics , Genes, Tumor Suppressor , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Mutation/genetics , Animals , Bilirubin/metabolism , Cell Line , Cells, Cultured , Citric Acid Cycle , Computer Simulation , Fumarate Hydratase/deficiency , Fumarates/metabolism , Glutamine/metabolism , Heme/metabolism , Heme Oxygenase (Decyclizing)/antagonists & inhibitors , Kidney Neoplasms/drug therapy , Kidney Neoplasms/enzymology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Leiomyomatosis/congenital , Leiomyomatosis/drug therapy , Leiomyomatosis/enzymology , Leiomyomatosis/genetics , Leiomyomatosis/metabolism , Mice , Mitochondria/metabolism , NAD/metabolism , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms
13.
BMC Cancer ; 14: 977, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25519703

ABSTRACT

BACKGROUND: Although chemotherapy for prostate cancer (PCa) can improve patient survival, some tumours are chemo-resistant. Tumour molecular profiles may help identify the mechanisms of drug action and identify potential prognostic biomarkers. We performed in vivo transcriptome profiling of pre- and post-treatment prostatic biopsies from patients with advanced hormone-naive prostate cancer treated with docetaxel chemotherapy and androgen deprivation therapy (ADT) with an aim to identify the mechanisms of drug action and identify prognostic biomarkers. METHODS: RNA sequencing (RNA-Seq) was performed on biopsies from four patients before and ~22 weeks after docetaxel and ADT initiation. Gene fusion products and differentially-regulated genes between treatment pairs were identified using TopHat and pathway enrichment analyses undertaken. Publically available datasets were interrogated to perform survival analyses on the gene signatures identified using cBioportal. RESULTS: A number of genomic rearrangements were identified including the TMPRSS2/ERG fusion and 3 novel gene fusions involving the ETS family of transcription factors in patients, both pre and post chemotherapy. In total, gene expression analyses showed differential expression of at least 2 fold in 575 genes in post-chemotherapy biopsies. Of these, pathway analyses identified a panel of 7 genes (ADAM7, FAM72B, BUB1B, CCNB1, CCNB2, TTK, CDK1), including a cell cycle-related geneset, that were differentially-regulated following treatment with docetaxel and ADT. Using cBioportal to interrogate the MSKCC-Prostate Oncogenome Project dataset we observed a statistically-significant reduction in disease-free survival of patients with tumours exhibiting alterations in gene expression of the above panel of 7 genes (p = 0.015). CONCLUSIONS: Here we report on the first "real-time" in vivo RNA-Seq-based transcriptome analysis of clinical PCa from pre- and post-treatment TRUSS-guided biopsies of patients treated with docetaxel chemotherapy plus ADT. We identify a chemotherapy-driven PCa transcriptome profile which includes the down-regulation of important positive regulators of cell cycle progression. A 7 gene signature biomarker panel has also been identified in high-risk prostate cancer patients to be of prognostic value. Future prospective study is warranted to evaluate the clinical value of this panel.


Subject(s)
Gene Expression Profiling , Prostatic Neoplasms/genetics , Prostatic Neoplasms/mortality , Transcriptome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Computational Biology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Male , Neoplasm Grading , Neoplasm Staging , Prognosis , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy
14.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36480166

ABSTRACT

IL-17A-producing γδ T cells in mice consist primarily of Vγ6+ tissue-resident cells and Vγ4+ circulating cells. How these γδ T cell subsets are regulated during homeostasis and cancer remains poorly understood. Using single-cell RNA sequencing and flow cytommetry, we show that lung Vγ4+ and Vγ6+ cells from tumor-free and tumor-bearing mice express contrasting cell surface molecules as well as distinct co-inhibitory molecules, which function to suppress their expansion. Vγ6+ cells express constitutively high levels of PD-1, whereas Vγ4+ cells upregulate TIM-3 in response to tumor-derived IL-1ß and IL-23. Inhibition of either PD-1 or TIM-3 in mammary tumor-bearing mice increased Vγ6+ and Vγ4+ cell numbers, respectively. We found that genetic deletion of γδ T cells elicits responsiveness to anti-PD-1 and anti-TIM-3 immunotherapy in a mammary tumor model that is refractory to T cell checkpoint inhibitors, indicating that IL-17A-producing γδ T cells instigate resistance to immunotherapy. Together, these data demonstrate how lung IL-17A-producing γδ T cell subsets are differentially controlled by PD-1 and TIM-3 in steady-state and cancer.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Interleukin-17 , Neoplasms , Programmed Cell Death 1 Receptor , T-Lymphocyte Subsets , Animals , Mice , Programmed Cell Death 1 Receptor/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism
15.
Front Toxicol ; 5: 1200650, 2023.
Article in English | MEDLINE | ID: mdl-37441092

ABSTRACT

Hypothesis: Asbestos-driven inflammation contributes to malignant pleural mesothelioma beyond the acquisition of rate-limiting mutations. Methods: Genetically modified conditional allelic mice that were previously shown to develop mesothelioma in the absence of exposure to asbestos were induced with lentiviral vector expressing Cre recombinase with and without intrapleural injection of amosite asbestos and monitored until symptoms required euthanasia. Resulting tumours were examined histologically and by immunohistochemistry for expression of lineage markers and immune cell infiltration. Results: Injection of asbestos dramatically accelerated disease onset and end-stage tumour burden. Tumours developed in the presence of asbestos showed increased macrophage infiltration. Pharmacological suppression of macrophages in mice with established tumours failed to extend survival or to enhance response to chemotherapy. Conclusion: Asbestos-driven inflammation contributes to the severity of mesothelioma beyond the acquisition of rate-limiting mutations, however, targeted suppression of macrophages in established epithelioid mesothelioma showed no therapeutic benefit.

16.
Cell Death Differ ; 29(3): 514-526, 2022 03.
Article in English | MEDLINE | ID: mdl-34628485

ABSTRACT

The p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carbon Tetrachloride/toxicity , Carcinoma, Hepatocellular/pathology , Liver/metabolism , Liver Neoplasms/pathology , Liver Regeneration , Mice , Oxidation-Reduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Mol Metab ; 63: 101532, 2022 09.
Article in English | MEDLINE | ID: mdl-35752287

ABSTRACT

Bone marrow mesenchymal stromal cells (MSCs) have immunomodulatory and regenerative potential. However, culture conditions govern their metabolic processes and therapeutic efficacy. Here we show that culturing donor-derived MSCs in Plasmax™, a physiological medium with the concentrations of nutrients found in human plasma, supports their proliferation and stemness, and prevents the nutritional stress induced by the conventional medium DMEM. The quantification of the exchange rates of metabolites between cells and medium, untargeted metabolomics, stable isotope tracing and transcriptomic analysis, performed at physiologically relevant oxygen concentrations (1%O2), reveal that MSCs rely on a high rate of glucose to lactate conversion, coupled with parallel anaplerotic fluxes from glutamine and glutamate to support citrate synthesis and secretion. These distinctive traits of MSCs shape the metabolic microenvironment of the bone marrow niche and can influence nutrient cross-talks under physiological and pathological conditions.


Subject(s)
Bone Marrow Cells , Mesenchymal Stem Cells , Citrates/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Humans , Mesenchymal Stem Cells/metabolism
18.
Nat Commun ; 13(1): 5317, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085324

ABSTRACT

Single cell profiling by genetic, proteomic and imaging methods has expanded the ability to identify programmes regulating distinct cell states. The 3-dimensional (3D) culture of cells or tissue fragments provides a system to study how such states contribute to multicellular morphogenesis. Whether cells plated into 3D cultures give rise to a singular phenotype or whether multiple biologically distinct phenotypes arise in parallel is largely unknown due to a lack of tools to detect such heterogeneity. Here we develop Traject3d (Trajectory identification in 3D), a method for identifying heterogeneous states in 3D culture and how these give rise to distinct phenotypes over time, from label-free multi-day time-lapse imaging. We use this to characterise the temporal landscape of morphological states of cancer cell lines, varying in metastatic potential and drug resistance, and use this information to identify drug combinations that inhibit such heterogeneity. Traject3d is therefore an important companion to other single-cell technologies by facilitating real-time identification via live imaging of how distinct states can lead to alternate phenotypes that occur in parallel in 3D culture.


Subject(s)
Neoplasms , Proteomics , Diagnostic Imaging , Humans , Neoplasms/diagnostic imaging , Phenotype
19.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
20.
Nat Commun ; 13(1): 7551, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477656

ABSTRACT

The pro-tumourigenic role of epithelial TGFß signalling in colorectal cancer (CRC) is controversial. Here, we identify a cohort of born to be bad early-stage (T1) colorectal tumours, with aggressive features and a propensity to disseminate early, that are characterised by high epithelial cell-intrinsic TGFß signalling. In the presence of concurrent Apc and Kras mutations, activation of epithelial TGFß signalling rampantly accelerates tumourigenesis and share transcriptional signatures with those of the born to be bad T1 human tumours and predicts recurrence in stage II CRC. Mechanistically, epithelial TGFß signalling induces a growth-promoting EGFR-signalling module that synergises with mutant APC and KRAS to drive MAPK signalling that re-sensitise tumour cells to MEK and/or EGFR inhibitors. Together, we identify epithelial TGFß signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRC's with born to be bad traits.


Subject(s)
Apoptosis , Transforming Growth Factor beta , Humans , Apoptosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL