Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Case Rep Crit Care ; 2019: 4275918, 2019.
Article in English | MEDLINE | ID: mdl-30792928

ABSTRACT

We here report on a case of massive organic mercury intoxication in a 40-year-old man that resulted in progressive multiorgan failure. We treated the patient intravenously and enterally with the chelating agent (RS)-2,3-bis(sulfanyl) propane-1-sulfonic acid (DMPS) in addition to hemodialysis. The patient was treated for 6 weeks and could successfully be weaned from mechanical ventilation and hemodialysis. He awoke and was sent to rehabilitation, but unfortunately died 7 months later from refractory status epilepticus. Autopsy revealed severe brain atrophy consistent with organ damage from massive mercury intoxication. The present case illustrates that bimodal DMPS application is sufficient for detoxification from lethal mercury levels, with an associated chance for weaning of organ support and survival to discharge. The case further reminds us of intoxication as a cause of multiorgan dysfunction. We propose to immediately initiate combined parenteral and enteral detoxification in cases of methyl mercury intoxication, especially in cases of high doses.

2.
Fresenius J Anal Chem ; 371(8): 1070-5, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11798099

ABSTRACT

A new axially viewed ICP optical emission spectrometer featuring an argon-filled optic and CCD detectors was evaluated for the application of prominent spectral lines in the 125-180 nm range. This wavelength range was investigated for several analytical applications of inductively coupled plasma optical emission spectrometry (ICP-OES). There are different advantages for the application of spectral lines below 180 nm. A number of elements, such as Al, Br, Cl, Ga, Ge, I, In, N, P, Pb, Pt, S and Te, were found to have the most intense spectral lines in the wavelength range from 125-180 nm. Compared with lines above 180 nm higher signal-to-background ratios were found. Low limits of detection using pneumatic nebulization of aqueous solutions for sample introduction were calculated for Al II 167.080 nm (0.04 microg L(-1)), Br I 154.065 nm (9 microg L(-1)), Cl I 134.724 nm (19 microg L(-1)), Ga II 141.444 nm (0.8 microg L(-1)), Ge II 164.919 nm (1.3 microg L(-1)), II 142.549 nm (13 microg L(-1)), In II 158.583 nm (0.2 microg L(-1)), P I 177.500 nm (0.9 microg L(-1)), Pb II 168.215 nm (1.5 microg L(-1)), Pt II 177.709 nm (2.6 microg L(-1)), S I 180.731 nm (1.9 microg L(-1)) and Te I 170.00 nm (4.6 microg L(-1)). Numerous application examples for the use of those lines and other important spectral lines below 180 nm are given. Because of fewer emission lines from transition elements, such as Fe, Co, Cr, lines below 180 nm often offer freedom from spectral interferences. Additional lines of lower intensity for the determination of higher elemental concentrations are also available in the vacuum ultraviolet spectral range. This is specially useful when the concentrations are not in the linear range of calibration curves obtained with commonly used lines.

SELECTION OF CITATIONS
SEARCH DETAIL