Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35202565

ABSTRACT

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

2.
Cell ; 185(11): 1875-1887.e8, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35523182

ABSTRACT

We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
3.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33631096

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Subject(s)
Alphacoronavirus/immunology , Antibodies, Viral , Betacoronavirus/immunology , COVID-19/immunology , Adolescent , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing , Child , Child, Preschool , Chlorocebus aethiops , Cross Protection , Cross Reactions , Disease Susceptibility , HEK293 Cells , Humans , Infant , Infant, Newborn , Vero Cells
4.
Nat Immunol ; 24(10): 1711-1724, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735592

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.

5.
Immunity ; 57(4): 912-925.e4, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38490198

ABSTRACT

The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals. It remains unclear if exposures to antigenically distant SARS-CoV-2 variants can overcome memory B cell biases established by initial SARS-CoV-2 encounters. We determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that targeted epitopes conserved between the BA.5 and ancestral spike. XBB exposures also elicited antibody responses that primarily targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low frequencies of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibody Formation , Antibodies , Epitopes , Antibodies, Neutralizing , Antibodies, Viral
6.
Immunity ; 54(6): 1245-1256.e5, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34004140

ABSTRACT

We examined how baseline CD4+ T cell repertoire and precursor states impact responses to pathogen infection in humans using primary immunization with yellow fever virus (YFV) vaccine. YFV-specific T cells in unexposed individuals were identified by peptide-MHC tetramer staining and tracked pre- and post-vaccination by tetramers and TCR sequencing. A substantial number of YFV-reactive T cells expressed memory phenotype markers and contained expanded clones in the absence of exposure to YFV. After vaccination, pre-existing YFV-specific T cell populations with low clonal diversity underwent limited expansion, but rare populations with a reservoir of unexpanded TCRs generated robust responses. These altered dynamics reorganized the immunodominance hierarchy and resulted in an overall increase in higher avidity T cells. Thus, instead of further increasing the representation of dominant clones, YFV vaccination recruits rare and more responsive T cells. Our findings illustrate the impact of vaccines in prioritizing T cell responses and reveal repertoire reorganization as a key component of effective vaccination.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Yellow Fever Vaccine/immunology , Yellow Fever/immunology , Yellow fever virus/immunology , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cells, Cultured , Chlorocebus aethiops , Humans , Receptors, Antigen, T-Cell/immunology , Vaccination/methods , Vero Cells , Yellow Fever/virology
7.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34453880

ABSTRACT

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , BNT162 Vaccine , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunologic Memory , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Middle Aged , Peptides/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
8.
Immunity ; 52(5): 842-855.e6, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32353250

ABSTRACT

B cell subsets expressing the transcription factor T-bet are associated with humoral immune responses and autoimmunity. Here, we examined the anatomic distribution, clonal relationships, and functional properties of T-bet+ and T-bet- memory B cells (MBCs) in the context of the influenza-specific immune response. In mice, both T-bet- and T-bet+ hemagglutinin (HA)-specific B cells arose in germinal centers, acquired memory B cell markers, and persisted indefinitely. Lineage tracing and IgH repertoire analyses revealed minimal interconversion between T-bet- and T-bet+ MBCs, and parabionts showed differential tissue residency and recirculation properties. T-bet+ MBCs could be subdivided into recirculating T-betlo MBCs and spleen-resident T-bethi MBCs. Human MBCs displayed similar features. Conditional gene deletion studies revealed that T-bet expression in B cells was required for nearly all HA stalk-specific IgG2c antibodies and for durable neutralizing titers to influenza. Thus, T-bet expression distinguishes MBC subsets that have profoundly different homing, residency, and functional properties, and mediate distinct aspects of humoral immune memory.


Subject(s)
Antibody Specificity/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Organ Specificity/immunology , T-Box Domain Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , HIV Antibodies/immunology , Humans , Influenza A virus/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Influenza, Human/virology , Mice , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37603748

ABSTRACT

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Influenza, Human , Immunoglobulin G/immunology , Antibodies, Viral/immunology , Immunoglobulin Fab Fragments/immunology , Antibody Formation , Influenza, Human/immunology , Influenza, Human/virology , COVID-19/immunology , COVID-19/virology , Immunoglobulin Class Switching , SARS-CoV-2/physiology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Humans , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/physiology
10.
J Virol ; 98(9): e0076624, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194245

ABSTRACT

Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of de novo responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited de novo HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited. The HA mAb potently inhibited de novo antibody responses against epitopes near the HA mAb binding site. The HA mAb also promoted IgG1 class switching, an effect that, unlike the inhibition of HA responses, relied on signaling through Fc-gamma receptors. These studies suggest that circulating antibodies inhibit de novo B cell responses in an antigen-specific manner, which likely contributes to differences in antibody specificities elicited during primary and secondary influenza virus exposures.IMPORTANCEMost humans are exposed to influenza viruses in childhood and then subsequently exposed to antigenically drifted influenza variants later in life. It is unclear if antibodies elicited by earlier influenza virus exposures impact immunity against new influenza virus strains. Here, we used a mouse model to investigate how an anti-hemagglutinin (HA) monoclonal antibody (mAb) affects de novo B cell and antibody responses to the protein targeted by the monoclonal antibody (HA) and a second protein not targeted by the monoclonal antibody [neuraminidase (NA)]. Collectively, our studies suggest that circulating anti-influenza virus antibodies can potently modulate the magnitude and specificity of antibody responses elicited by secondary influenza virus exposures.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , B-Lymphocytes , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Animals , Mice , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , B-Lymphocytes/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Female , Neuraminidase/immunology , Mice, Inbred BALB C , Immunoglobulin G/immunology , Epitopes/immunology , Antibody Formation/immunology
11.
J Infect Dis ; 230(1): 15-27, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052709

ABSTRACT

Patients with B-cell lymphomas have altered cellular components of vaccine responses due to malignancy and therapy, and the optimal timing of vaccination relative to therapy remains unknown. Severe acute respiratory syndrome coronavirus 2 vaccines created an opportunity for new insights in vaccine timing because patients were challenged with a novel antigen across multiple phases of treatment. We studied serologic messenger RNA vaccine response in retrospective and prospective cohorts with lymphoma and chronic lymphocytic leukemia, paired with clinical and research immune parameters. Reduced serologic response was observed more frequently during active treatment, but nonresponse was also common within observation and posttreatment groups. Total immunoglobulin A and immunoglobulin M correlated with successful vaccine response. In individuals treated with anti-CD19-directed chimeric antigen receptor-modified T cells, nonresponse was associated with reduced B and T follicular helper cells. Predictors of vaccine response varied by disease and therapeutic group, and therefore further studies of immune health during and after cancer therapies are needed to individualize vaccine timing.


Subject(s)
COVID-19 Vaccines , COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Female , Middle Aged , Aged , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Retrospective Studies , COVID-19/immunology , COVID-19/prevention & control , Prospective Studies , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccination , Immunoglobulin M/blood , Lymphoma/immunology , Lymphoma/therapy , Aged, 80 and over
12.
Clin Infect Dis ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041887

ABSTRACT

BACKGROUND: Studies have reported that repeated annual vaccination may influence influenza vaccination effectiveness in the current season. METHODS: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. In the first two years, participants received vaccination (V) or saline placebo (P) as follows: P-P, P-V, or V-V. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera collected at 5 timepoints from 95 participants were tested for antibodies against vaccine strains. RESULTS: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with smaller increases for repeat vaccinees who on average had higher pre-vaccination titers in year 2. There were statistically significant differences in the proportion of participants achieving >=four-fold rises in antibody titer for the repeat vaccinees for influenza A(H1N1), B/Victoria and B/Yamagata, but not for A(H3N2). Among participants who received vaccination in year 2, there were no statistically significant differences between the P-V and V-V groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. CONCLUSIONS: In the first two years, during which influenza did not circulate, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection.

13.
J Virol ; 97(1): e0172322, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36533954

ABSTRACT

Most human influenza vaccine antigens are produced in fertilized chicken eggs. Recent H3N2 egg-based vaccine antigens have limited effectiveness, partially due to egg-adaptive substitutions that alter the antigenicity of the hemagglutinin (HA) protein. The nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP) vaccine platform is a promising alternative for egg-based influenza vaccines because mRNA-LNP-derived antigens are not subject to adaptive pressures that arise during the production of antigens in chicken eggs. Here, we compared H3N2-specific antibody responses in mice vaccinated with either 3c.2A H3-encoding mRNA-LNP or a conventional egg-based Fluzone vaccine (which included an egg-adapted 3c.2A antigen) supplemented with an MF59-like adjuvant. We tested mRNA-LNP encoding wild-type and egg-adapted H3 antigens. We found that mRNA-LNP encoding wild-type H3 elicited antibodies that neutralized the wild-type 3c.2A H3N2 virus more effectively than antibodies elicited by mRNA-LNP encoding egg-adapted H3 or the egg-based Fluzone vaccine. mRNA-LNP expressing either wild-type or egg-adapted H3 protected mice against infection with the wild-type 3c2.A H3N2, whereas the egg-based Fluzone vaccine did not. We found that both mRNA-LNP vaccines elicited high levels of group 2 HA stalk-reactive antibodies, which likely contributed to protection in vivo. Our studies indicate that nucleoside-modified mRNA-LNP-based vaccines can circumvent problems associated with egg adaptations with recent 3c2.A H3N2 viruses. IMPORTANCE This study shows that the nucleoside-modified mRNA-LNP vaccine platform is a promising alternative for egg-based influenza vaccines. We show that mRNA-LNP vaccines expressing H3 antigens elicit high levels of antibodies in mice and protect against H3N2 influenza virus infection.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Nucleosides , mRNA Vaccines , Animals , Humans , Mice , Antibodies, Viral , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , RNA, Messenger/genetics , mRNA Vaccines/genetics , mRNA Vaccines/immunology
14.
J Virol ; 96(11): e0220021, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35588275

ABSTRACT

An H1N1 influenza virus caused a pandemic in 2009, and descendants of this virus continue to circulate seasonally in humans. Upon infection with the 2009 H1N1 pandemic strain (pH1N1), many humans produced antibodies against epitopes in the hemagglutinin (HA) stalk. HA stalk-focused antibody responses were common among pH1N1-infected individuals because HA stalk epitopes were conserved between the pH1N1 strain and previously circulating H1N1 strains. Here, we completed a series of experiments to determine if the pH1N1 HA stalk has acquired substitutions since 2009 that prevent the binding of human antibodies. We identified several amino acid substitutions that accrued in the pH1N1 HA stalk from 2009 to 2019. We completed enzyme-linked immunosorbent assays, absorption-based binding assays, and surface plasmon resonance experiments to determine if these substitutions affect antibody binding. Using sera collected from 230 humans (aged 21 to 80 years), we found that pH1N1 HA stalk substitutions that have emerged since 2009 do not affect antibody binding. Our data suggest that the HA stalk domain of pH1N1 viruses remained antigenically stable after circulating in humans for a decade. IMPORTANCE In 2009, a new pandemic H1N1 (pH1N1) virus began circulating in humans. Many individuals mounted hemagglutinin (HA) stalk-focused antibody responses upon infection with the 2009 pH1N1 strain, since the HA stalk of this virus was relatively conserved with other seasonal H1N1 strains. Here, we completed a series of studies to determine if the 2009 pH1N1 strain has undergone antigenic drift in the HA stalk domain over the past decade. We found that serum antibodies from 230 humans could not antigenically distinguish the 2009 and 2019 HA stalk. These data suggest that the HA stalk of pH1N1 has remained antigenically stable, despite the presence of high levels of HA stalk antibodies within the human population.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza, Human , Adult , Aged , Aged, 80 and over , Amino Acid Substitution , Antibodies, Viral/immunology , Antigens, Viral/genetics , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Middle Aged , Young Adult
15.
PLoS Pathog ; 17(2): e1009273, 2021 02.
Article in English | MEDLINE | ID: mdl-33600489

ABSTRACT

Human-to-human transmission of influenza viruses is a serious public health threat, yet the precise role of immunity from previous infections on the susceptibility to airborne infection is still unknown. Using the ferret model, we examined the roles of exposure duration and heterosubtypic immunity on influenza transmission. We demonstrate that a 48 hour exposure is sufficient for efficient transmission of H1N1 and H3N2 viruses. To test pre-existing immunity, a gap of 8-12 weeks between primary and secondary infections was imposed to reduce innate responses and ensure robust infection of donor animals with heterosubtypic viruses. We found that pre-existing H3N2 immunity did not significantly block transmission of the 2009 H1N1pandemic (H1N1pdm09) virus to immune animals. Surprisingly, airborne transmission of seasonal H3N2 influenza strains was abrogated in recipient animals with H1N1pdm09 pre-existing immunity. This protection from natural infection with H3N2 virus was independent of neutralizing antibodies. Pre-existing immunity with influenza B virus did not block H3N2 virus transmission, indicating that the protection was likely driven by the adaptive immune response. We demonstrate that pre-existing immunity can impact susceptibility to heterologous influenza virus strains, and implicate a novel correlate of protection that can limit the spread of respiratory pathogens through the air.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/transmission , Animals , Ferrets , Male , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology
16.
Nature ; 543(7644): 248-251, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28151488

ABSTRACT

Zika virus (ZIKV) has recently emerged as a pandemic associated with severe neuropathology in newborns and adults. There are no ZIKV-specific treatments or preventatives. Therefore, the development of a safe and effective vaccine is a high priority. Messenger RNA (mRNA) has emerged as a versatile and highly effective platform to deliver vaccine antigens and therapeutic proteins. Here we demonstrate that a single low-dose intradermal immunization with lipid-nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP) encoding the pre-membrane and envelope glycoproteins of a strain from the ZIKV outbreak in 2013 elicited potent and durable neutralizing antibody responses in mice and non-human primates. Immunization with 30 µg of nucleoside-modified ZIKV mRNA-LNP protected mice against ZIKV challenges at 2 weeks or 5 months after vaccination, and a single dose of 50 µg was sufficient to protect non-human primates against a challenge at 5 weeks after vaccination. These data demonstrate that nucleoside-modified mRNA-LNP elicits rapid and durable protective immunity and therefore represents a new and promising vaccine candidate for the global fight against ZIKV.


Subject(s)
RNA, Messenger/administration & dosage , RNA, Messenger/chemistry , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Female , Glycoproteins/genetics , Glycoproteins/immunology , Injections, Intradermal , Macaca mulatta/immunology , Macaca mulatta/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA Stability , RNA, Messenger/genetics , RNA, Viral/administration & dosage , RNA, Viral/chemistry , RNA, Viral/genetics , Time Factors , Vaccination , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/administration & dosage , Zika Virus/chemistry , Zika Virus/genetics , Zika Virus Infection/immunology
17.
Proc Natl Acad Sci U S A ; 117(29): 17221-17227, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32631992

ABSTRACT

Immunity to influenza viruses can be long-lived, but reinfections with antigenically distinct viral strains and subtypes are common. Reinfections can boost antibody responses against viral strains first encountered in childhood through a process termed "original antigenic sin." It is unknown how initial childhood exposures affect the induction of antibodies against the hemagglutinin (HA) stalk domain of influenza viruses. This is an important consideration since broadly reactive HA stalk antibodies can protect against infection, and universal vaccine platforms are being developed to induce these antibodies. Here we show that experimentally infected ferrets and naturally infected humans establish strong "immunological imprints" against HA stalk antigens first encountered during primary influenza virus infections. We found that HA stalk antibodies are surprisingly boosted upon subsequent infections with antigenically distinct influenza A virus subtypes. Paradoxically, these heterosubtypic-boosted HA stalk antibodies do not bind efficiently to the boosting influenza virus strain. Our results demonstrate that an individual's HA stalk antibody response is dependent on the specific subtype of influenza virus that they first encounter early in life. We propose that humans are susceptible to heterosubtypic influenza virus infections later in life since these viruses boost HA stalk antibodies that do not bind efficiently to the boosting antigen.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/immunology , Animals , Ferrets , Hemagglutinins , Humans , Immunization, Secondary , Immunoglobulin G/blood , Recombinant Proteins
18.
J Infect Dis ; 226(3): 463-473, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35134186

ABSTRACT

Some risk factors for severe coronavirus disease 2019 (COVID-19) have been identified, including age, race, and obesity. However, 20%-50% of severe cases occur in the absence of these factors. Cytomegalovirus (CMV) is a herpesvirus that infects about 50% of all individuals worldwide and is among the most significant nongenetic determinants of immune system. We hypothesized that latent CMV infection might influence the severity of COVID-19. Our analyses demonstrate that CMV seropositivity is associated with more than twice the risk of hospitalization due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immune profiling of blood and CMV DNA quantitative polymerase chain reaction in a subset of patients for whom respiratory tract samples were available revealed altered T-cell activation profiles in absence of extensive CMV replication in the upper respiratory tract. These data suggest a potential role for CMV-driven immune perturbations in affecting the outcome of SARS-CoV-2 infection and may have implications for the discrepancies in COVID-19 severity between different human populations.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Latent Infection , Cytomegalovirus , Hospitalization , Humans , SARS-CoV-2
19.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Article in English | MEDLINE | ID: mdl-34193339

ABSTRACT

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Subject(s)
COVID-19 , Antibody Formation , COVID-19/immunology , COVID-19 Serological Testing , Humans , Nasopharynx , SARS-CoV-2 , Seroconversion
20.
Clin Infect Dis ; 70(11): 2432-2434, 2020 05 23.
Article in English | MEDLINE | ID: mdl-31400756

ABSTRACT

Here, we find that the egg-adapted H3N2 component of the 2019 Southern Hemisphere influenza vaccine elicits an antibody response in ferrets that is highly focused on antigenic site A of hemagglutinin. This is potentially problematic as most H3N2 viruses currently circulating in the Southern Hemisphere possess antigenic site A substitutions.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Antibody Formation , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL