Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Mar Drugs ; 20(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36547926

ABSTRACT

Repetitive exposure to ultraviolet B (UVB) is one of the main causes of skin photoaging. We previously reported that dieckol isolated from Eisenia bicyclis extract has potential anti-photoaging effects in UVB-irradiated Hs68 cells. Here, we aimed to evaluate the anti-photoaging activity of dieckol in a UVB-irradiated hairless mouse model. In this study, hairless mice were exposed to UVB for eight weeks. At the same time, dieckol at two doses (5 or 10 mg/kg) was administered orally three times a week. We found that dieckol suppressed UVB-induced collagen degradation and matrix metalloproteinases (MMPs)-1, -3, and -9 expression by regulating transforming growth factor beta (TGF-ß)/Smad2/3 and mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) signaling. In addition, dieckol rescued the production of hyaluronic acid (HA) and effectively restored the mRNA expression of hyaluronan synthase (HAS)-1/-2 and hyaluronidase (HYAL)-1/-2 in UVB-irradiated hairless mice. We observed a significant reduction in transepidermal water loss (TEWL), epidermal/dermal thickness, and wrinkle formation in hairless mice administered dieckol. Based on these results, we suggest that dieckol, due to its anti-photoaging role, may be used as a nutricosmetic ingredient for improving skin health.


Subject(s)
Benzofurans , Mitogen-Activated Protein Kinases , Skin Aging , Smad Proteins , Transcription Factor AP-1 , Transforming Growth Factor beta , Animals , Mice , Mice, Hairless , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Skin/drug effects , Skin/metabolism , Skin Aging/drug effects , Transcription Factor AP-1/metabolism , Transforming Growth Factor beta/metabolism , Ultraviolet Rays/adverse effects , Benzofurans/isolation & purification , Benzofurans/pharmacology , Smad Proteins/metabolism
2.
Food Funct ; 15(12): 6424-6437, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38771619

ABSTRACT

Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.


Subject(s)
3T3-L1 Cells , AMP-Activated Protein Kinases , Anti-Obesity Agents , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Plant Extracts , Signal Transduction , Animals , Mice , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Male , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Adipogenesis/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Edible Seaweeds , Kelp
3.
Nutrients ; 15(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36771320

ABSTRACT

Obesity is a major cause of conditions such as type 2 diabetes and non-alcoholic fatty liver disease, posing a threat to public health worldwide. Here, we analyzed the anti-obesity effects of a standardized ethanol extract of Cassia mimosoides var. nomame Makino (EECM) in vitro and in vivo. Treatment of 3T3-L1 adipocytes with EECM suppressed adipogenesis and lipogenesis via the AMP-activated protein kinase pathway by downregulating the expression levels of CCAAT/enhancer-binding protein-alpha, peroxisome proliferator-activated receptor (PPAR)-γ, sterol regulatory element-binding protein-1, and fatty acid synthase and upregulating the acetyl-CoA carboxylase. EECM inhibited mitotic clonal expansion during early adipocyte differentiation. Oral administration of EECM for 10 weeks significantly alleviated body weight gain and body fat accumulation in high-fat diet (HFD)-fed mice. EECM mitigated adipogenesis and lipid accumulation in white adipose and liver tissues of HFD-induced obese mice. It regulated the levels of adipogenic hormones including insulin, leptin, and adipokine in the blood plasma. In brown adipose tissue, EECM induced the expression of thermogenic factors such as uncoupling protein-1, PPAR-α, PPARγ co-activator-1α, sirtuin 1, and cytochrome c oxidase IV. EECM restored the gut microbiome composition at the phylum level and alleviated dysbiosis. Therefore, EECM may be used as a promising therapeutic agent for the prevention of obesity.


Subject(s)
Anti-Obesity Agents , Cassia , Diabetes Mellitus, Type 2 , Plant Extracts , Animals , Mice , 3T3-L1 Cells , Adipogenesis , Anti-Obesity Agents/pharmacology , Cassia/chemistry , Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Lipogenesis , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , PPAR gamma/metabolism , Plant Extracts/pharmacology
4.
Food Funct ; 14(15): 6957-6968, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37435675

ABSTRACT

Ulcerative colitis (UC) is a chronic disease of the colon characterized by mucosal damage and relapsing gastrointestinal inflammation. Hydrangea serrata (Thunb.) Ser. and its bioactive compound, hydrangenol, are reported to have anti-inflammatory effects, but few studies have investigated the effects of hydrangenol in colitis. In the present study, we evaluated for the first time the anti-colitic effects and molecular mechanisms of hydrangenol in a dextran sodium sulfate (DSS)-induced mouse colitis model. To investigate the anti-colitic effects of hydrangenol, DSS-induced colitis mice, HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages, and LPS-induced RAW264.7 macrophages were used. In addition, to clarify the molecular mechanisms of this study, quantitative real time-PCR, western blot analysis, TUNEL assay, and annexin V-FITC/PI double staining analysis were conducted. Oral administration of hydrangenol (15 or 30 mg kg-1) significantly alleviated DSS-induced colitis by preventing DAI scores, shortening colon length, and colonic structural damage. F4/80+ macrophage numbers in mesenteric lymph nodes and macrophage infiltration in colonic tissues were significantly suppressed following hydrangenol treatment in DSS-exposed mice. Hydrangenol significantly attenuated DSS-induced destruction of the colonic epithelial cell layer through regulation of pro-caspase-3, occludin, and claudin-1 protein expression. Moreover, hydrangenol ameliorated abnormal tight junction protein expression and apoptosis in HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages. Hydrangenol suppressed the expression of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, IL-6, and IL-1ß through NF-κB, AP-1, and STAT1/3 inactivation in DSS-induced colon tissue and LPS-induced RAW264.7 macrophages. Taken together, our findings suggest that hydrangenol recovers the tight junction proteins and down-regulates the expression of the pro-inflammatory mediators by interfering with the macrophage infiltration in DSS-induced colitis. Our study provides compelling evidence that hydrangenol may be a candidate for inflammatory bowel disease therapy.


Subject(s)
Colitis, Ulcerative , Colitis , Hydrangea , Animals , Mice , Dextran Sulfate/adverse effects , Lipopolysaccharides/pharmacology , Signal Transduction , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Colitis, Ulcerative/chemically induced , Colon/metabolism , Macrophages , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammation Mediators/metabolism , Disease Models, Animal , Mice, Inbred C57BL
5.
Life Sci ; 334: 122227, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37926298

ABSTRACT

The inhibition of cell death, perturbation of microtubule dynamics, and acceleration of Wnt/ß-catenin/epithelial-mesenchymal transition (EMT) signaling are fundamental processes in the progression and metastasis of colorectal cancer (CRC). To explore the role of 2-stearoxyphenethyl phosphocholine (stPEPC), an alkylphospholipid-based compound, in CRC, we conducted an MTT assay, cell cycle analysis, western blot analysis, immunoprecipitation, immunofluorescence staining, Annexin V/propidium iodide double staining, small interfering RNA gene silencing, a wound-healing assay, an invasion assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in the human CRC cell lines HT29 and HCT116. stPEPC showed anti-proliferative properties and mitotic cell accumulation via upregulated phosphorylation of BUBR1 and an association between mitotic arrest deficiency 2 (MAD2) and cell division cycle protein 20 homolog (CDC20). These results suggest that activation of the mitotic checkpoint complex and tubulin polymerization occurred, resulting in mitotic catastrophe in HT29 and HCT116 cells. In addition, stPEPC attenuated cell migration and invasion by regulating proteins mediated by EMT, such as E-cadherin and occludin. stPEPC altered the protein expression of Wnt3a and phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), glycogen synthase kinase 3ß (GSK3ß), and ß-catenin as well as their target genes, including cMyc and cyclin D1, in CRC cells. Thus, stPEPC may be useful for developing new drugs to treat human CRC.


Subject(s)
Colorectal Neoplasms , Phosphorylcholine , Humans , Cell Line, Tumor , beta Catenin/metabolism , Epithelial-Mesenchymal Transition/genetics , Colorectal Neoplasms/pathology , Wnt Signaling Pathway/genetics , Cell Cycle Proteins/metabolism , Cell Movement/genetics , Microtubules/metabolism , Cell Proliferation/genetics , Glycogen Synthase Kinase 3 beta/metabolism
6.
Biomed Pharmacother ; 163: 114708, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121153

ABSTRACT

Although drugs such as acetaminophen, opioids, and nonsteroidal anti-inflammatory drugs (NSAIDs), are commonly used for pain management, the side effects of these drugs such as hepatotoxicity, nephrotoxicity, nausea, and vomiting, can not be neglected. Therefore, combinations of analgesics with different mechanisms raise the possibility of developing novel analgesics. Therefore, the aim of the present study was to evaluate whether DW-1021, the ionic complex of pelubiprofen (NSAID) and tramadol (opioid), has synergic antinociceptive and anti-inflammatory effects in nociceptive as well as inflammation-induced nociceptive models compared to pelubiprofen- or tramadol-only administration. Strong synergistic antinociceptive efficacy of DW-1021 was observed in the mouse writhing test and von Frey paw withdrawal threshold test in the carrageenan-induced rats. The hot plate test in mice and the Randall-Selitto mechanical paw pressure test in carrageenan-induced rats revealed that DW-1021 had a preferable effect on relieving pain to pelubiprofen, but not as much as tramadol. In the carrageenan-induced rats, DW-1021 had a more potent effect on reducing paw inflammation (paw volume, width, and thickness) via the suppression of PGE2 production than tramadol, but less than that of pelubiprofen. Taken together, our results suggest that the administration of DW-1021, a combination of pelubiprofen and tramadol, exerted a potent effect and can be used as a potential therapeutic agent for relieving pain and inflammation.


Subject(s)
Tramadol , Rats , Mice , Animals , Tramadol/pharmacology , Tramadol/therapeutic use , Rodentia , Carrageenan/therapeutic use , Pain/drug therapy , Pain/chemically induced , Analgesics/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Analgesics, Opioid/therapeutic use , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL