Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
J Bacteriol ; 204(6): e0011822, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35652671

ABSTRACT

Many oral bacteria employ cell wall-anchored adhesins to bind to the salivary films coating the teeth and mucosal surfaces. Surface binding prevents clearance and facilitates catabolism of salivary film glycoproteins. We asked whether Streptococcus gordonii adhesin expression changes in response to surface salivary cues using a eukaryote-like, outside-in recognition and signaling circuit. To determine whether the cues were discriminated, S. gordonii was tested during cell adhesion and biofilm formation on a MUC5B-rich or lower-molecular-mass salivary fraction or an uncoated abiotic surface. Cells were recovered and analyzed for differences in gene expression and proteins in cell wall fractions. In salivary-free conditions, planktonic S. gordonii presented three prominent cell wall LPXTG-motif proteins, SGO_1487, SGO_0890, and MbpA (mucin-binding protein A; SGO_0707). During biofilm formation on MUC5B-coated surfaces, MbpA, a MUC5B-binding protein, and key genes in the tagatose and quorum-sensing pathways were strongly promoted. The response to MUC5B required the two-component system (TCS), streptococcal regulator of adhesins sensor and regulator (SraSR, SGO_1180/81), lipoteichoic acid (LTA), and the homologous paired adhesins, SspA and SspB (SspAB). LTA appears to link the outside signal (MUC5B) to intramembrane SraSR. Tagatose pathway gene expression may poise cells to metabolize MUC5B glycans and, with a quorum-sensing gene (luxS), may direct formation of a consortium to facilitate glycan cross-feeding by S. gordonii. We now show that a Gram-positive bacterium discriminates specific surface environmental cues using an outside-in signaling mechanism to apparently optimize colonization of saliva-coated surfaces. IMPORTANCE All organisms throughout the tree of life sense and respond to their surface environments. To discriminate among mucosal surface environmental cues, we report that Streptococcus gordonii recognizes a high-molecular-weight mucin glycoprotein, MUC5B, using the paired adhesins SspAB and lipoteichoic acid; the latter bridges the outside signal to an intramembrane two-component system to transcriptionally regulate a MUC5B-specific adhesin and genes that may facilitate glycan catabolism.


Subject(s)
Bacterial Adhesion , Streptococcus gordonii , Adhesins, Bacterial/metabolism , Lipopolysaccharides , Mucins/metabolism , Streptococcus gordonii/metabolism , Teichoic Acids/metabolism
2.
Int Endod J ; 55(7): 772-783, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35383959

ABSTRACT

AIM: To evaluate the physicochemical properties of five root canal sealers and assess their effect on an ex vivo dental plaque-derived polymicrobial community. METHODOLOGY: Dental plaque-derived microbial communities were exposed to the sealers (AH Plus [AHP], GuttaFlow Bioseal [GFB], Endoseal MTA [ESM], Bio-C sealer [BCS] and BioRoot RCS [BRR]) for 3, 6 and 18 h. The sealers' effect on the biofilm biomass and metabolic activity was quantified using crystal violet (CV) staining and MTT assay, respectively. Biofilm community composition and morphology were assessed by denaturing gradient gel electrophoresis (DGGE), 16S rRNA sequencing and scanning electron microscopy. The ISO6876:2012 specifications were followed to determine the setting time, radiopacity, flowability and solubility. Obturated acrylic teeth were used to assess the sealers' effect on pH. Surface chemical characterization was performed using SEM with coupled energy-dispersive spectroscopy. Data normality was assessed using the Shapiro-Wilk test. One-way anova and Tukey's tests were used to analyze data from setting time, radiopacity, flowability and solubility. Two-way anova and Dunnett's tests were used for the data analysis from CV, MTT and pH. 16S rRNA sequencing data were analyzed for alpha (Shannon index and Chao analysis) and beta diversity (Bray-Curtis dissimilarities). Differences in community composition were evaluated by analysis of similarity (p < .05). RESULTS: The sealers significantly influenced microbial community composition and morphology. All sealers complied with ISO6876:2012 requirements for setting time, radiopacity and flowability. Although only AHP effectively reduced the biofilm biomass, all sealers, except BRR, reduced biofilm metabolic activity. CONCLUSION: Despite adequate physical properties, none of the sealers tested prevented biofilm growth. Significant changes in community composition were observed. If observed in vivo, these changes could affect intracanal microbial survival, pathogenicity and treatment outcomes.


Subject(s)
Dental Plaque , Root Canal Filling Materials , Biofilms , Calcium Compounds/chemistry , Dental Pulp Cavity , Epoxy Resins/chemistry , Humans , Materials Testing , RNA, Ribosomal, 16S , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacology , Silicates/chemistry
3.
Infect Immun ; 89(10): e0012221, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34097505

ABSTRACT

Upregulated in inflammation, calprotectin (complexed S100A8 and S100A9; S100A8/A9) functions as an innate immune effector molecule, promoting inflammation, and also as an antimicrobial protein. We hypothesized that antimicrobial S100A8/A9 would mitigate change to the local microbial community and promote resistance to experimental periodontitis in vivo. To test this hypothesis, S100A9-/- and wild-type (WT; S100A9+/+) C57BL/6 mice were compared using a model of ligature-induced periodontitis. On day 2, WT mice showed fewer infiltrating innate immune cells than S100A9-/- mice; by day 5, the immune cell numbers were similar. At 5 days post ligature placement, oral microbial communities sampled with swabs differed significantly in beta diversity between the mouse genotypes. Ligatures recovered from molar teeth of S100A9-/- and WT mice contained significantly dissimilar microbial genera from each other and the overall oral communities from swabs. Concomitantly, the S100A9-/- mice had significantly greater alveolar bone loss than WT mice around molar teeth in ligated sites. When the oral microflora was ablated by antibiotic pretreatment, differences disappeared between WT and S100A9-/- mice in their immune cell infiltrates and alveolar bone loss. Calprotectin, therefore, suppresses emergence of a dysbiotic, proinflammatory oral microbial community, which reduces innate immune effector activity, including early recruitment of innate immune cells, mitigating subsequent alveolar bone loss and protecting against experimental periodontitis.


Subject(s)
Immunity, Innate/immunology , Leukocyte L1 Antigen Complex/immunology , Periodontitis/immunology , Alveolar Bone Loss/immunology , Animals , Dysbiosis/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL
4.
J Bacteriol ; 203(2)2020 12 18.
Article in English | MEDLINE | ID: mdl-33106345

ABSTRACT

Streptococcus gordonii is a commensal oral organism. Harmless in the oral cavity, S. gordonii is an opportunistic pathogen. S. gordonii adheres to body surfaces using surface adhesive proteins (adhesins), which are critical to subsequent formation of biofilm communities. As in most Gram-positive bacteria, S. gordonii surface proteins containing the C-terminal LPXTG motif cleavage sequence are processed by sortase A (SrtA) to become covalently attached to the cell wall. To characterize the functional diversity and redundancy in the family of SrtA-processed proteins, an S. gordonii DL1 markerless deletion mutant library was constructed of each of the 26 putative SrtA-processed proteins. Each library member was evaluated for growth in rich medium, biofilm formation on plastic, saliva and salivary fractions, cell surface hydrophobicity (CSH), hemagglutination, and integration into an ex vivo plaque biofilm community. Library members were compared to the non-SrtA-processed adhesins AbpA and AbpB. While no major growth differences in rich medium were observed, many S. gordonii LPXTG/A proteins impacted biofilm formation on one or more of the substrates. Several mutants showed significant differences in hemagglutination, hydrophobicity, or fitness in the ex vivo plaque model. From the identification of redundant and unique functions in these in vitro and ex vivo systems, functional stratification among the LPXTG/A proteins is apparent.IMPORTANCES. gordonii interactions with its environment depend on the complement of cell wall proteins. A subset of these cell wall proteins requires processing by the enzyme sortase A (SrtA). The identification of SrtA-processed proteins and their functional characterization will help the community to better understand how S. gordonii engages with its surroundings, including other microbes, integrates into the plaque community, adheres to the tooth surface, and hematogenously disseminates to cause blood-borne infections. This study identified 26 putative SrtA-processed proteins through creation of a markerless deletion mutant library. The library was subject to functional screens that were chosen to better understand key aspects of S. gordonii physiology and pathogenesis.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/physiology , Biofilms/growth & development , Cysteine Endopeptidases/metabolism , Streptococcus gordonii/physiology , Aminoacyltransferases/chemistry , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cysteine Endopeptidases/chemistry , Dental Plaque/microbiology , Gene Deletion , Hemagglutination , Humans , Hydrophobic and Hydrophilic Interactions , Mouth/microbiology , Saliva/microbiology , Sheep/blood , Streptococcus gordonii/genetics , Streptococcus gordonii/growth & development
5.
J Clin Periodontol ; 44 Suppl 18: S5-S11, 2017 03.
Article in English | MEDLINE | ID: mdl-28266109

ABSTRACT

BACKGROUND AND AIMS: The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases. RESULTS AND CONCLUSIONS: A health-associated biofilm includes genera such as Neisseria, Streptococcus, Actinomyces, Veillonella and Granulicatella. Microorganisms associated with both caries and periodontal diseases are metabolically highly specialized and organized as multispecies microbial biofilms. Progression of these diseases involves multiple microbial interactions driven by different stressors. In caries, the exposure of dental biofilms to dietary sugars and their fermentation to organic acids results in increasing proportions of acidogenic and aciduric species. In gingivitis, plaque accumulation at the gingival margin leads to inflammation and increasing proportions of proteolytic and often obligately anaerobic species. The natural mucosal barriers and saliva are the main innate defence mechanisms against soft tissue bacterial invasion. Similarly, enamel and dentin are important hard tissue barriers to the caries process. Given that the present state of knowledge suggests that the aetiologies of caries and periodontal diseases are mutually independent, the elements of innate immunity that appear to contribute to resistance to both are somewhat coincidental.


Subject(s)
Biofilms , Dental Caries/microbiology , Oral Health , Periodontitis/microbiology , Host-Pathogen Interactions , Humans
6.
Biochim Biophys Acta ; 1829(9): 954-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23563247

ABSTRACT

S100A9 is a calcium-binding protein and subunit of antimicrobial calprotectin complex (S100A8/A9). Produced by neutrophils, monocytes/macrophages and keratinocytes, S100A9 expression increases in response to inflammation. For example, IL-1α produced by epithelial cells acts autonomously on the same cells to induce the expression of S100A8/A9 and cellular differentiation. Whereas it is well known that IL-1α and members of the IL-10 family of cytokines upregulate S100A8 and S100A9 in several cell lineages, the pathway and mechanism of IL-1α-dependent transcriptional control of S100A9 in epithelial cells are not established. Modeled using human epidermal keratinocytes (HaCaT cells), IL-1α stimulated the phosphorylation of p38 MAPK and induced S100A9 expression, which was blocked by IL-1 receptor antagonist, RNAi suppression of p38, or a p38 MAPK inhibitor. Transcription of S100A9 in HaCaT cells depended on nucleotides -94 to -53 in the upstream promoter region, based upon the use of deletion constructs and luciferase reporter activity. Within the responsive promoter region, IL-1α increased the binding activity of CCAAT/enhancer binding protein ß (C/EBPß). Mutated C/EBPß binding sequences or C/EBPß-specific siRNA inhibited the S100A9 transcriptional response. Hence, IL-1α is strongly suggested to increase S100A9 expression in a human epidermal keratinocyte cell line by signaling through the IL-1 receptor and p38 MAPK, increasing C/EBPß-dependent transcriptional activity.


Subject(s)
Calgranulin B/genetics , Epidermis/metabolism , Interleukin-1alpha/physiology , Keratinocytes/metabolism , Transcription, Genetic/physiology , Base Sequence , Cell Line , DNA Primers , Humans , Polymerase Chain Reaction , RNA Interference , p38 Mitogen-Activated Protein Kinases/metabolism
7.
bioRxiv ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38559107

ABSTRACT

N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.

8.
Infect Immun ; 81(11): 3975-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23940207

ABSTRACT

To protect against invading bacteria, oral epithelial cells appear to use two effector antimicrobial peptides (AMPs): calprotectin (S100A8-S100A9 heterodimer [S100A8/A9]) in the cytosol and cathelicidin antimicrobial protein (CAMP) in endosomes. We sought to learn whether innate immunity might be augmented benignly to increase resistance against invasive bacteria. Epithelial cells were transiently transfected with mRNA constructs containing either the CAMP, S100A8, and S100A9 open reading frames, A8-IRES-A9 (fusion sequence), or A8-nIRES-A9 (fusion with native internal ribosome entry site [IRES] sequence). CAMP, S100A8, and S100A9 protein levels generally peaked between 16 and 44 h after mRNA transfection, depending on the construct; CAMP was processed to LL-37 over time. Following transfection with the respective mRNAs, CAMP and S100A8/A9 each independently increased resistance of epithelial cells to invasion by Listeria and Salmonella for up to 48 h; tandem S100A8/A9 constructs were also effective. Cotransfection to express S100A8/A9 and CAMP together augmented resistance, but synergy was not seen. Independent of the new proteins produced, transfection reduced cell viability after 48 h by 20%, with only 2% attributable to apoptosis. Taken together, these results suggest that epithelial cell resistance to invasive pathogens can be augmented by transient transfection of antimicrobial mRNAs into epithelial cells.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Leukocyte L1 Antigen Complex/immunology , Listeria/immunology , RNA, Messenger/metabolism , Salmonella/immunology , Antimicrobial Cationic Peptides/genetics , Cell Line , Gene Expression , Humans , Leukocyte L1 Antigen Complex/genetics , RNA, Messenger/genetics , Transfection , Cathelicidins
9.
J Clin Periodontol ; 40 Suppl 14: S20-3, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23627330

ABSTRACT

BACKGROUND: There has been an explosion in research into possible associations between periodontitis and various systemic diseases and conditions. AIM: To review the evidence for associations between periodontitis and various systemic diseases and conditions, including chronic obstructive pulmonary disease (COPD), pneumonia, chronic kidney disease, rheumatoid arthritis, cognitive impairment, obesity, metabolic syndrome and cancer, and to document headline discussions of the state of each field. Periodontal associations with diabetes, cardiovascular disease and adverse pregnancy outcomes were not discussed by working group 4. RESULTS: Working group 4 recognized that the studies performed to date were largely cross-sectional or case-control with few prospective cohort studies and no randomized clinical trials. The best current evidence suggests that periodontitis is characterized by both infection and pro-inflammatory events, which variously manifest within the systemic diseases and disorders discussed. Diseases with at least minimal evidence of an association with periodontitis include COPD, pneumonia, chronic kidney disease, rheumatoid arthritis, cognitive impairment, obesity, metabolic syndrome and cancer. The working group agreed that there is insufficient evidence to date to infer causal relationships with the exception that organisms originating in the oral microbiome can cause lung infections. CONCLUSIONS: The group was unanimous in their opinion that the reported associations do not imply causality, and establishment of causality will require new studies that fulfil the Bradford Hill or equivalent criteria. Precise and community-agreed case definitions of periodontal disease states must be implemented systematically to enable consistent and clearer interpretations of studies of the relationship to systemic diseases. The members of the working group were unanimous in their opinion that to develop data that best inform clinicians, investigators and the public, studies should focus on robust disease outcomes and avoid surrogate endpoints. It was concluded that because of the relative immaturity of the body of evidence for each of the purported relationships, the field is wide open and the gaps in knowledge are large.


Subject(s)
Periodontal Diseases , Periodontitis , Cardiovascular Diseases , Cross-Sectional Studies , Humans , Prospective Studies , Risk Factors
10.
Oral Oncol ; 137: 106304, 2023 02.
Article in English | MEDLINE | ID: mdl-36608459

ABSTRACT

OBJECTIVES: In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS: Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS: In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS: In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.


Subject(s)
Carcinoma , Head and Neck Neoplasms , Animals , Humans , Mice , Apoptosis , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/metabolism , Head and Neck Neoplasms/genetics , Leukocyte L1 Antigen Complex/metabolism , Mice, Inbred C57BL , Squamous Cell Carcinoma of Head and Neck
11.
J Exp Med ; 220(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37097449

ABSTRACT

The oral mucosa is a frontline for microbial exposure and juxtaposes several unique tissues and mechanical structures. Based on parabiotic surgery of mice receiving systemic viral infections or co-housing with microbially diverse pet shop mice, we report that the oral mucosa harbors CD8+ CD103+ resident memory T cells (TRM), which locally survey tissues without recirculating. Oral antigen re-encounter during the effector phase of immune responses potentiated TRM establishment within tongue, gums, palate, and cheek. Upon reactivation, oral TRM triggered changes in somatosensory and innate immune gene expression. We developed in vivo methods for depleting CD103+ TRM while sparing CD103neg TRM and recirculating cells. This revealed that CD103+ TRM were responsible for inducing local gene expression changes. Oral TRM putatively protected against local viral infection. This study provides methods for generating, assessing, and in vivo depleting oral TRM, documents their distribution throughout the oral mucosa, and provides evidence that TRM confer protection and trigger responses in oral physiology and innate immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , Animals , Mice , Antigens/metabolism , Immunologic Memory , Mouth Mucosa
12.
Front Oral Health ; 3: 958480, 2022.
Article in English | MEDLINE | ID: mdl-35979535

ABSTRACT

The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.

14.
Immunol Cell Biol ; 88(3): 328-33, 2010.
Article in English | MEDLINE | ID: mdl-20065999

ABSTRACT

Calprotectin is an antimicrobial complex composed of the S100A8 and S100A9 protein family subunits. Contributing to innate immunity, calprotectin expression is increased by interleukin-1alpha (IL-1alpha), which modulates keratinocyte differentiation. Keratinocyte growth factor (KGF) is produced by mesenchymal cells and has a mitogenic activity for epithelial cells. In this study, we investigated the effect of KGF on calprotectin expression in keratinocytes and modulation by IL-1alpha. Human keratinocytes were cultured with KGF in the presence or absence of a KGF receptor (KGFR) inhibitor or mitogen-activated protein kinase (MAPK) inhibitors. Calprotectin (S100A8/S100A9) expression was determined by northern blotting and enzyme-linked immunosorbent assay, respectively, whereas MAPK phosphorylation was analyzed by western blot analysis. KGF significantly decreased the expression of S100A8/S100A9-specific mRNAs and calprotectin protein. In the presence of KGF, KGFR inhibitor or extracellular-regulated kinase inhibitor restored KGF-downregulated expression of S100A8/S100A9. KGF increased IL-1alpha expression in keratinocytes, whereas IL-1alpha increased KGF expression in fibroblasts. Cocultured fibroblast and keratinocytes showed lower S100A8/S100A9 mRNA expression than keratinocytes alone in the presence or absence of IL-1alpha or KGF. These results suggest that fibroblast-derived KGF reduces or restricts calprotectin expression in keratinocytes, which supports our hypothesis that calprotectin expression in keratinocytes is modulated by factors associated with epithelial-mesenchymal interactions.


Subject(s)
Calgranulin A/biosynthesis , Calgranulin B/biosynthesis , Fibroblast Growth Factor 7/metabolism , Gene Expression Regulation/physiology , Interleukin-1alpha/metabolism , Keratinocytes/metabolism , Cell Line , Coculture Techniques , Fibroblast Growth Factor 7/pharmacology , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Humans , Interleukin-1alpha/pharmacology , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology
15.
J Bacteriol ; 191(20): 6281-91, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19684131

ABSTRACT

Extracellular DNA (eDNA) is produced by several bacterial species and appears to contribute to biofilm development and cell-cell adhesion. We present data showing that the oral commensals Streptococcus sanguinis and Streptococcus gordonii release DNA in a process induced by pyruvate oxidase-dependent production of hydrogen peroxide (H(2)O(2)). Surprisingly, S. sanguinis and S. gordonii cell integrity appears unaffected by conditions that cause autolysis in other eDNA-producing bacteria. Exogenous H(2)O(2) causes release of DNA from S. sanguinis and S. gordonii but does not result in obvious lysis of cells. Under DNA-releasing conditions, cell walls appear functionally intact and ribosomes are retained over time. During DNA release, intracellular RNA and ATP are not coreleased. Hence, the release mechanism appears to be highly specific for DNA. Release of DNA without detectable autolysis is suggested to be an adaptation to the competitive oral biofilm environment, where autolysis could create open spaces for competitors to invade. Since eDNA promotes cell-to-cell adhesion, release appears to support oral biofilm formation and facilitates exchange of genetic material among competent strains.


Subject(s)
DNA, Bacterial/metabolism , Hydrogen Peroxide/pharmacology , Streptococcus gordonii/drug effects , Streptococcus sanguis/drug effects , Kinetics , RNA, Bacterial/metabolism
16.
mSphere ; 4(6)2019 12 04.
Article in English | MEDLINE | ID: mdl-31801844

ABSTRACT

Lipoteichoic acid (LTA) is an abundant polymer of the Gram-positive bacterial cell envelope and is essential for many species. Whereas the exact function of LTA has not been elucidated, loss of LTA in some species affects hydrophobicity, biofilm formation, and cell division. Using a viable LTA-deficient strain of the human oral commensal Streptococcus gordonii, we demonstrated that LTA plays an important role in surface protein presentation. Cell wall fractions derived from the wild-type and LTA-deficient strains of S. gordonii were analyzed using label-free mass spectroscopy. Comparisons showed that the abundances of many proteins differed, including (i) SspA, SspB, and S. gordonii 0707 (SGO_0707) (biofilm formation); (ii) FtsE (cell division); (iii) Pbp1a and Pbp2a (cell wall biosynthesis and remodeling); and (iv) DegP (envelope stress response). These changes in cell surface protein presentation appear to explain our observations of altered cell envelope homeostasis, biofilm formation, and adhesion to eukaryotic cells, without affecting binding and coaggregation with other bacterial species, and provide insight into the phenotypes revealed by the loss of LTA in other species of Gram-positive bacteria. We also characterized the chemical structure of the LTA expressed by S. gordonii Similarly to Streptococcus suis, S. gordonii produced a complex type I LTA, decorated with multiple d-alanylations and glycosylations. Hence, the S. gordonii LTA appears to orchestrate expression and presentation of cell surface-associated proteins and functions.IMPORTANCE Discovered over a half-century ago, lipoteichoic acid (LTA) is an abundant polymer found on the surface of Gram-positive bacteria. Although LTA is essential for the survival of many Gram-positive species, knowledge of how LTA contributes to bacterial physiology has remained elusive. Recently, LTA-deficient strains have been generated in some Gram-positive species, including the human oral commensal Streptococcus gordonii The significance of our research is that we utilized an LTA-deficient strain of S. gordonii to address why LTA is physiologically important to Gram-positive bacteria. We demonstrate that in S. gordonii, LTA plays an important role in the presentation of many cell surface-associated proteins, contributing to cell envelope homeostasis, cell-to-cell interactions in biofilms, and adhesion to eukaryotic cells. These data may broadly reflect a physiological role of LTA in Gram-positive bacteria.


Subject(s)
Bacterial Proteins/metabolism , Lipopolysaccharides/metabolism , Membrane Proteins/metabolism , Streptococcus gordonii/metabolism , Teichoic Acids/metabolism , Cell Wall/chemistry , Lipopolysaccharides/deficiency , Mass Spectrometry
17.
Oral Oncol ; 95: 1-10, 2019 08.
Article in English | MEDLINE | ID: mdl-31345374

ABSTRACT

OBJECTIVES: Calprotectin (S100A8/A9) appears to function as a tumor suppressor in head and neck squamous cell carcinoma (HNSCC) and expression in the carcinoma cells and patient survival rates are directly related. We seek to characterize the suppressive role of calprotectin in HNSCC. AIMS: (1) Investigate changes in S100A8/A9 expression as oral carcinogenesis progresses and (2) determine whether intracellular calprotectin can regulate epidermal growth factor receptor (EGFR), a negative prognostic factor, in HNSCC. MATERIALS AND METHODS: Using immunohistochemistry (IHC), S100A8/A9 was analyzed in HNSCC specimens (N = 46), including well-differentiated (WD, N = 19), moderately-differentiated (MD, N = 14), poorly-differentiated (PD, N = 5) and non-keratinizing/basaloid (NK/BAS, N = 8), and premalignant epithelial dysplasias (PED, N = 16). Similarly, EGFR was analyzed in HNSCCs (N = 21). To determine whether calprotectin and EGFR expression are mechanistically linked, TR146 HNSCC cells that are S100A8/A9-expressing or silenced (shRNA) were compared for EGFR levels and caspase-3/7 activity using western blotting and immunofluorescence microscopy. RESULTS: In normal oral mucosal epithelium, S100A8/A9 stained strongly in the cytoplasm and nucleus of suprabasal cells; basal cells were consistently S100A8/A9 negative. In PED and HNSCC, S100A8/A9 expression was lower than in adjacent normal epithelial tissues (NAT) and declined progressively in WD, MD, PD and NK/BAS HNSCCs. S100A8/A9 and EGFR levels appeared inversely related, which was simulated in vitro when S100A8/A9 was silenced in TR146 cells. Silencing S100A8/A9 significantly reduced caspase-3/7 activity, whereas EGFR levels increased. CONCLUSIONS: In HNSCC, S100A8/A9 is directly associated with cellular differentiation and appears to promote caspase-3/7-mediated cleavage of EGFR, which could explain why patients with S100A8/A9-high tumors survive longer.


Subject(s)
Head and Neck Neoplasms/pathology , Leukocyte L1 Antigen Complex/metabolism , Mouth Mucosa/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Adult , Aged , Aged, 80 and over , Apoptosis , Calgranulin A/metabolism , Calgranulin B/metabolism , Caspase 3/metabolism , Caspase 7/metabolism , Cell Differentiation , Cell Line, Tumor , Epithelial Cells/pathology , ErbB Receptors/metabolism , Female , Gene Knockdown Techniques , Humans , Leukocyte L1 Antigen Complex/genetics , Male , Middle Aged , Mouth Mucosa/cytology , Proteolysis , RNA, Small Interfering/metabolism , Squamous Cell Carcinoma of Head and Neck/mortality , Survival Rate , Young Adult
18.
Sci Signal ; 12(580)2019 05 07.
Article in English | MEDLINE | ID: mdl-31064885

ABSTRACT

Bacterial adhesins mediate adhesion to substrates and biofilm formation. Adhesins of the LPXTG family are posttranslationally processed by the cell membrane-localized peptidase sortase A, which cleaves the LPXTG motif. This generates a short C-terminal peptide (C-pep) that remains in the cell membrane, whereas the mature adhesin is incorporated into the cell wall. Genes encoding adhesins of the oral bacterium Streptococcus gordonii were differentially expressed depending on whether the bacteria were isolated from saliva or dental plaque and appeared to be coordinately regulated. Deletion of sspA and sspB (sspAB), both of which encode LPXTG-containing adhesins, unexpectedly enhanced adhesion and biofilm formation. C-peps produced from a model LPXTG-containing adhesin localized to the cell membrane and bound to and inhibited the intramembrane sensor histidine kinase SGO_1180, thus preventing activation of the cognate response regulator SGO_1181. The absence of SspAB C-peps induced the expression of the scaCBA operon encoding the lipoprotein adhesin ScaA, which was sufficient to preserve and even enhance biofilm formation. This C-pep-driven regulatory circuit also exists in pathogenic streptococci and is likely conserved among Gram-positive bacteria. This quality control mechanism ensures that the bacteria can form biofilms under diverse environmental conditions and may play a role in optimizing adhesion and biofilm formation.


Subject(s)
Adhesins, Bacterial/metabolism , Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Membrane Glycoproteins/metabolism , Streptococcus gordonii/metabolism , Adhesins, Bacterial/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Biofilms , Cysteine Endopeptidases/genetics , Dental Plaque/microbiology , Gene Expression Regulation, Bacterial , Mutation , Peptide Fragments/genetics , Peptide Fragments/metabolism , Saliva/microbiology , Sequence Homology, Amino Acid , Streptococcus gordonii/genetics , Streptococcus gordonii/physiology
19.
J Bacteriol ; 190(13): 4632-40, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18441055

ABSTRACT

Biofilms are polymicrobial, with diverse bacterial species competing for limited space and nutrients. Under healthy conditions, the different species in biofilms maintain an ecological balance. This balance can be disturbed by environmental factors and interspecies interactions. These perturbations can enable dominant growth of certain species, leading to disease. To model clinically relevant interspecies antagonism, we studied three well-characterized and closely related oral species, Streptococcus gordonii, Streptococcus sanguinis, and cariogenic Streptococcus mutans. S. sanguinis and S. gordonii used oxygen availability and the differential production of hydrogen peroxide (H(2)O(2)) to compete effectively against S. mutans. Interspecies antagonism was influenced by glucose with reduced production of H(2)O(2). Furthermore, aerobic conditions stimulated the competence system and the expression of the bacteriocin mutacin IV of S. mutans, as well as the H(2)O(2)-dependent release of heterologous DNA from mixed cultures of S. sanguinis and S. gordonii. These data provide new insights into ecological factors that determine the outcome of competition between pioneer colonizing oral streptococci and the survival mechanisms of S. mutans in the oral biofilm.


Subject(s)
Biofilms/growth & development , Streptococcus mutans/physiology , Streptococcus sanguis/physiology , Biofilms/drug effects , DNA, Bacterial/metabolism , Glucose/pharmacology , Hydrogen Peroxide/metabolism , Mutation , Oxygen/metabolism , Polymerase Chain Reaction , Streptococcus gordonii/growth & development , Streptococcus gordonii/metabolism , Streptococcus gordonii/physiology , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Streptococcus sanguis/genetics , Streptococcus sanguis/metabolism
20.
Retrovirology ; 5: 29, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18371227

ABSTRACT

BACKGROUND: Systemic infection with HIV occurs infrequently through the oral route. The frequency of occurrence may be increased by concomitant bacterial infection of the oral tissues, since co-infection and inflammation of some cell types increases HIV-1 replication. A putative periodontal pathogen, Porphyromonas gingivalis selectively up-regulates expression of the HIV-1 coreceptor CCR5 on oral keratinocytes. We, therefore, hypothesized that P. gingivalis modulates the outcome of HIV infection in oral epithelial cells. RESULTS: Oral and tonsil epithelial cells were pre-incubated with P. gingivalis, and inoculated with either an X4- or R5-type HIV-1. Between 6 and 48 hours post-inoculation, P. gingivalis selectively increased the infectivity of R5-tropic HIV-1 from oral and tonsil keratinocytes; infectivity of X4-tropic HIV-1 remained unchanged. Oral keratinocytes appeared to harbor infectious HIV-1, with no evidence of productive infection. HIV-1 was harbored at highest levels during the first 6 hours after HIV exposure and decreased to barely detectable levels at 48 hours. HIV did not appear to co-localize with P. gingivalis, which increased selective R5-tropic HIV-1 trans infection from keratinocytes to permissive cells. When CCR5 was selectively blocked, HIV-1 trans infection was reduced. CONCLUSION: P. gingivalis up-regulation of CCR5 increases trans infection of harbored R5-tropic HIV-1 from oral keratinocytes to permissive cells. Oral infections such as periodontitis may, therefore, increase risk for oral infection and dissemination of R5-tropic HIV-1.


Subject(s)
HIV Infections/virology , HIV-1/physiology , Keratinocytes/microbiology , Porphyromonas gingivalis/physiology , Receptors, CCR5/metabolism , Bacteroidaceae Infections/microbiology , Cell Line , Coculture Techniques , Epithelial Cells/immunology , Epithelial Cells/virology , Humans , Mouth Mucosa/cytology , Mouth Mucosa/microbiology , Risk Factors , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL