Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Eur Radiol ; 34(3): 1877-1892, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37646809

ABSTRACT

OBJECTIVES: Multiple lung cancer screening studies reported the performance of Lung CT Screening Reporting and Data System (Lung-RADS), but none systematically evaluated its performance across different populations. This systematic review and meta-analysis aimed to evaluate the performance of Lung-RADS (versions 1.0 and 1.1) for detecting lung cancer in different populations. METHODS: We performed literature searches in PubMed, Web of Science, Cochrane Library, and Embase databases on October 21, 2022, for studies that evaluated the accuracy of Lung-RADS in lung cancer screening. A bivariate random-effects model was used to estimate pooled sensitivity and specificity, and heterogeneity was explored in stratified and meta-regression analyses. RESULTS: A total of 31 studies with 104,224 participants were included. For version 1.0 (27 studies, 95,413 individuals), pooled sensitivity was 0.96 (95% confidence interval [CI]: 0.90-0.99) and pooled specificity was 0.90 (95% CI: 0.87-0.92). Studies in high-risk populations showed higher sensitivity (0.98 [95% CI: 0.92-0.99] vs. 0.84 [95% CI: 0.50-0.96]) and lower specificity (0.87 [95% CI: 0.85-0.88] vs. 0.95 (95% CI: 0.92-0.97]) than studies in general populations. Non-Asian studies tended toward higher sensitivity (0.97 [95% CI: 0.91-0.99] vs. 0.91 [95% CI: 0.67-0.98]) and lower specificity (0.88 [95% CI: 0.85-0.90] vs. 0.93 [95% CI: 0.88-0.96]) than Asian studies. For version 1.1 (4 studies, 8811 individuals), pooled sensitivity was 0.91 (95% CI: 0.83-0.96) and specificity was 0.81 (95% CI: 0.67-0.90). CONCLUSION: Among studies using Lung-RADS version 1.0, considerable heterogeneity in sensitivity and specificity was noted, explained by population type (high risk vs. general), population area (Asia vs. non-Asia), and cancer prevalence. CLINICAL RELEVANCE STATEMENT: Meta-regression of lung cancer screening studies using Lung-RADS version 1.0 showed considerable heterogeneity in sensitivity and specificity, explained by the different target populations, including high-risk versus general populations, Asian versus non-Asian populations, and populations with different lung cancer prevalence. KEY POINTS: • High-risk population studies showed higher sensitivity and lower specificity compared with studies performed in general populations by using Lung-RADS version 1.0. • In non-Asian studies, the diagnostic performance of Lung-RADS version 1.0 tended to be better than in Asian studies. • There are limited studies on the performance of Lung-RADS version 1.1, and evidence is lacking for Asian populations.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer , Lung/diagnostic imaging , Sensitivity and Specificity
2.
N Engl J Med ; 382(6): 503-513, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31995683

ABSTRACT

BACKGROUND: There are limited data from randomized trials regarding whether volume-based, low-dose computed tomographic (CT) screening can reduce lung-cancer mortality among male former and current smokers. METHODS: A total of 13,195 men (primary analysis) and 2594 women (subgroup analyses) between the ages of 50 and 74 were randomly assigned to undergo CT screening at T0 (baseline), year 1, year 3, and year 5.5 or no screening. We obtained data on cancer diagnosis and the date and cause of death through linkages with national registries in the Netherlands and Belgium, and a review committee confirmed lung cancer as the cause of death when possible. A minimum follow-up of 10 years until December 31, 2015, was completed for all participants. RESULTS: Among men, the average adherence to CT screening was 90.0%. On average, 9.2% of the screened participants underwent at least one additional CT scan (initially indeterminate). The overall referral rate for suspicious nodules was 2.1%. At 10 years of follow-up, the incidence of lung cancer was 5.58 cases per 1000 person-years in the screening group and 4.91 cases per 1000 person-years in the control group; lung-cancer mortality was 2.50 deaths per 1000 person-years and 3.30 deaths per 1000 person-years, respectively. The cumulative rate ratio for death from lung cancer at 10 years was 0.76 (95% confidence interval [CI], 0.61 to 0.94; P = 0.01) in the screening group as compared with the control group, similar to the values at years 8 and 9. Among women, the rate ratio was 0.67 (95% CI, 0.38 to 1.14) at 10 years of follow-up, with values of 0.41 to 0.52 in years 7 through 9. CONCLUSIONS: In this trial involving high-risk persons, lung-cancer mortality was significantly lower among those who underwent volume CT screening than among those who underwent no screening. There were low rates of follow-up procedures for results suggestive of lung cancer. (Funded by the Netherlands Organization of Health Research and Development and others; NELSON Netherlands Trial Register number, NL580.).


Subject(s)
Cone-Beam Computed Tomography , Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/mortality , Aged , Belgium/epidemiology , False Positive Reactions , Female , Humans , Incidence , Lung Neoplasms/epidemiology , Male , Medical Overuse , Middle Aged , Netherlands/epidemiology , Registries , Sex Factors , Smoking/epidemiology
3.
Eur Respir J ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37202154

ABSTRACT

Screening for lung cancer with low radiation dose computed tomography (LDCT) has a strong evidence base. The European Council adopted a recommendation in November 2022 that lung cancer screening be implemented using a stepwise approach. The imperative now is to ensure that implementation follows an evidence-based process that delivers clinical and cost effectiveness. This ERS Taskforce was formed to provide a technical standard for a high-quality lung cancer screening program. METHOD: A collaborative group was convened to include members of multiple European societies (see below). Topics were identified during a scoping review and a systematic review of the literature was conducted. Full text was provided to members of the group for each topic. The final document was approved by all members and the ERS Scientific Advisory Committee. RESULTS: Ten topics were identified representing key components of a screening program. The action on findings from the LDCT were not included as they are addressed by separate international guidelines (nodule management and clinical management of lung cancer) and by a linked taskforce (incidental findings). Other than smoking cessation, other interventions that are not part of the core screening process were not included (e.g. pulmonary function measurement). Fifty-three statements were produced and areas for further research identified. CONCLUSION: This European collaborative group has produced a technical standard that is a timely contribution to implementation of LCS. It will serve as a standard that can be used, as recommended by the European Council, to ensure a high quality and effective program.

4.
AJR Am J Roentgenol ; 220(3): 314-329, 2023 03.
Article in English | MEDLINE | ID: mdl-36129224

ABSTRACT

Pulmonary nodules are managed on the basis of their size and morphologic characteristics. Radiologists are familiar with assessing nodule size by measuring diameter using manually deployed electronic calipers. Size may also be assessed with 3D volumetric measurements (referred to as volumetry) obtained with software. Nodule size and growth are more accurately assessed with volumetry than on the basis of diameter, and the evidence supporting clinical use of volumetry has expanded, driven by its use in lung cancer screening nodule management algorithms in Europe. The application of volumetry has the potential to reduce recommendations for imaging follow-up of indeterminate solid nodules without impacting cancer detection. Although changes in scanning conditions and volumetry software packages can lead to variation in volumetry results, ongoing technical advances have improved the reliability of calculated volumes. Volumetry is now the primary method for determining size of solid nodules in the European lung cancer screening position statement and British Thoracic Society recommendations. The purposes of this article are to review technical aspects, advantages, and limitations of volumetry and, by considering specific scenarios, to contextualize the use of volumetry with respect to its importance in morphologic evaluation, its role in predicting malignancy in risk models, and its practical impact on nodule management. Implementation challenges and areas requiring further evidence are also highlighted.


Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Solitary Pulmonary Nodule/pathology , Early Detection of Cancer/methods , Reproducibility of Results
5.
Eur J Epidemiol ; 38(4): 445-454, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36943671

ABSTRACT

Trials show that low-dose computed tomography (CT) lung cancer screening in long-term (ex-)smokers reduces lung cancer mortality. However, many individuals were exposed to unnecessary diagnostic procedures. This project aims to improve the efficiency of lung cancer screening by identifying high-risk participants, and improving risk discrimination for nodules. This study is an extension of the Dutch-Belgian Randomized Lung Cancer Screening Trial, with a focus on personalized outcome prediction (NELSON-POP). New data will be added on genetics, air pollution, malignancy risk for lung nodules, and CT biomarkers beyond lung nodules (emphysema, coronary calcification, bone density, vertebral height and body composition). The roles of polygenic risk scores and air pollution in screen-detected lung cancer diagnosis and survival will be established. The association between the AI-based nodule malignancy score and lung cancer will be evaluated at baseline and incident screening rounds. The association of chest CT imaging biomarkers with outcomes will be established. Based on these results, multisource prediction models for pre-screening and post-baseline-screening participant selection and nodule management will be developed. The new models will be externally validated. We hypothesize that we can identify 15-20% participants with low-risk of lung cancer or short life expectancy and thus prevent ~140,000 Dutch individuals from being screened unnecessarily. We hypothesize that our models will improve the specificity of nodule management by 10% without loss of sensitivity as compared to assessment of nodule size/growth alone, and reduce unnecessary work-up by 40-50%.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Early Detection of Cancer/methods , Lung , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Mass Screening/methods , Multiple Pulmonary Nodules/pathology , Prognosis
6.
Radiology ; 304(2): 322-330, 2022 08.
Article in English | MEDLINE | ID: mdl-35503012

ABSTRACT

Background Given the different methods of assessing emphysema, controversy exists as to whether it is associated with lung cancer. Purpose To perform a systematic review and meta-analysis of the association between chest CT-defined emphysema and the presence of lung cancer. Materials and Methods The PubMed, Embase, and Cochrane databases were searched up to July 15, 2021, to identify studies on the association between emphysema assessed visually or quantitatively with CT and lung cancer. Associations were determined by emphysema severity (trace, mild, or moderate to severe, assessed visually and quantitatively) and subtype (centrilobular and paraseptal, assessed visually). Overall and stratified pooled odds ratios (ORs) with their 95% CIs were obtained. Results Of the 3343 screened studies, 21 studies (107 082 patients) with 26 subsets were included. The overall pooled ORs for lung cancer given the presence of emphysema were 2.3 (95% CI: 2.0, 2.6; I2 = 35%; 19 subsets) and 1.02 (95% CI: 1.01, 1.02; six subsets) per 1% increase in low attenuation area. Studies with visual (pooled OR, 2.3; 95% CI: 1.9, 2.6; I2 = 48%; 12 subsets) and quantitative (pooled OR, 2.2; 95% CI: 1.8, 2.8; I2 = 3.7%; eight subsets) assessments yielded comparable results for the dichotomous assessment. Based on six studies (1716 patients), the pooled ORs for lung cancer increased with emphysema severity and were higher for visual assessment (2.5, 3.7, and 4.5 for trace, mild, and moderate to severe, respectively) than for quantitative assessment (1.9, 2.2, and 2.5) based on point estimates. Compared with no emphysema, only centrilobular emphysema (three studies) was associated with lung cancer (pooled OR, 2.2; 95% CI: 1.5, 3.2; P < .001). Conclusion Both visual and quantitative CT assessments of emphysema were associated with a higher odds of lung cancer, which also increased with emphysema severity. Regarding subtype, only centrilobular emphysema was significantly associated with lung cancer. Clinical trial registration no. CRD42021262163 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Hunsaker in this issue.


Subject(s)
Emphysema , Lung Neoplasms , Pulmonary Emphysema , Humans , Lung , Lung Neoplasms/complications , Lung Neoplasms/diagnostic imaging , Odds Ratio , Pulmonary Emphysema/complications , Pulmonary Emphysema/diagnostic imaging , Tomography, X-Ray Computed/methods
7.
J Intern Med ; 292(1): 68-80, 2022 07.
Article in English | MEDLINE | ID: mdl-35253286

ABSTRACT

Lung cancer causes more deaths than breast, cervical, and colorectal cancer combined. Nevertheless, population-based lung cancer screening is still not considered standard practice in most countries worldwide. Early lung cancer detection leads to better survival outcomes: patients diagnosed with stage 1A lung cancer have a >75% 5-year survival rate, compared to <5% at stage 4. Low-dose computed tomography (LDCT) thorax imaging for the secondary prevention of lung cancer has been studied at length, and has been shown to significantly reduce lung cancer mortality in high-risk populations. The US National Lung Screening Trial reported a 20% overall reduction in lung cancer mortality when comparing LDCT to chest X-ray, and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) trial more recently reported a 24% reduction when comparing LDCT to no screening. Hence, the focus has now shifted to implementation research. Consequently, the 4-IN-THE-LUNG-RUN consortium based in five European countries, has set up a large-scale multicenter implementation trial. Successful implementation of and accessibility to LDCT lung cancer screening are dependent on many factors, not limited to population selection, recruitment strategy, computed tomography screening frequency, lung-nodule management, participant compliance, and cost effectiveness. This review provides an overview of current evidence for LDCT lung cancer screening, and draws attention to major factors that need to be addressed to successfully implement standardized, effective, and accessible screening throughout Europe. Evidence shows that through the appropriate use of risk-prediction models and a more personalized approach to screening, efficacy could be improved. Furthermore, extending the screening interval for low-risk individuals to reduce costs and associated harms is a possibility, and through the use of volumetric-based measurement and follow-up, false positive results can be greatly reduced. Finally, smoking cessation programs could be a valuable addition to screening programs and artificial intelligence could offer a solution to the added workload pressures radiologists are facing.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Artificial Intelligence , Early Detection of Cancer/methods , Humans , Lung Neoplasms/diagnostic imaging , Mass Screening/methods , Multicenter Studies as Topic , Tomography, X-Ray Computed/methods
8.
Eur Radiol ; 32(12): 8162-8170, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35678862

ABSTRACT

OBJECTIVES: This study aimed to evaluate the association between visual emphysema and the presence of lung nodules, and Lung-RADS category with low-dose CT (LDCT). METHODS: Baseline LDCT scans of 1162 participants from a lung cancer screening study (Nelcin-B3) performed in a Chinese general population were included. The presence, subtypes, and severity of emphysema (at least trace) were visually assessed by one radiologist. The presence, size, and classification of non-calcified lung nodules (≥ 30 mm3) and Lung-RADS category were independently assessed by another two radiologists. Multivariable logistic regression and stratified analyses were performed to estimate the association between emphysema and lung nodules, Lung-RADS category, after adjusting for age, sex, BMI, smoking status, pack-years, and passive smoking. RESULTS: Emphysema and lung nodules were observed in 674 (58.0%) and 424 (36.5%) participants, respectively. Participants with emphysema had a 71% increased risk of having lung nodules (adjusted odds ratios, aOR: 1.71, 95% CI: 1.26-2.31) and 70% increased risk of positive Lung-RADS category (aOR: 1.70, 95% CI: 1.09-2.66) than those without emphysema. Participants with paraseptal emphysema (n = 47, 4.0%) were at a higher risk for lung nodules than those with centrilobular emphysema (CLE) (aOR: 2.43, 95% CI: 1.32-4.50 and aOR: 1.60, 95% CI: 1.23-2.09, respectively). Only CLE was associated with positive Lung-RADS category (p = 0.02). CLE severity was related to a higher risk of lung nodules (ranges aOR: 1.44-2.61, overall p < 0.01). CONCLUSION: In a Chinese general population, visual emphysema based on LDCT is independently related to the presence of lung nodules (≥ 30 mm3) and specifically CLE subtype is related to positive Lung-RADS category. The risk of lung nodules increases with CLE severity. KEY POINTS: • Participants with emphysema had an increased risk of having lung nodules, especially smokers. • Participants with PSE were at a higher risk for lung nodules than those with CLE, but nodules in participants with CLE had a higher risk of positive Lung-RADS category. • The risk of lung nodules increases with CLE severity.


Subject(s)
Emphysema , Lung Neoplasms , Precancerous Conditions , Pulmonary Emphysema , Humans , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/epidemiology , Pulmonary Emphysema/etiology , Tomography, X-Ray Computed/adverse effects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Lung Neoplasms/complications , Early Detection of Cancer/adverse effects , Lung/diagnostic imaging , Emphysema/diagnostic imaging , Emphysema/epidemiology , China
9.
Eur Radiol ; 31(6): 4023-4030, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33269413

ABSTRACT

OBJECTIVES: To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical perifissural nodules (PFN). METHODS: Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were collected. Pulmonary nodules were classified into subtypes, including "typical PFNs" on-site, and were reviewed by a central clinician. The dataset was divided into a training/cross-validation set of 1557 nodules (1103 individuals) and a test set of 196 nodules (158 individuals). For the test set, three radiologically trained readers classified the nodules into three nodule categories: typical PFN, atypical PFN, and non-PFN. The consensus of the three readers was used as reference to evaluate the performance of the PFN-CNN. Typical PFNs were considered as positive results, and atypical PFNs and non-PFNs were grouped as negative results. PFN-CNN performance was evaluated using the ROC curve, confusion matrix, and Cohen's kappa. RESULTS: Internal validation yielded a mean AUC of 91.9% (95% CI 90.6-92.9) with 78.7% sensitivity and 90.4% specificity. For the test set, the reader consensus rated 45/196 (23%) of nodules as typical PFN. The classifier-reader agreement (k = 0.62-0.75) was similar to the inter-reader agreement (k = 0.64-0.79). Area under the ROC curve was 95.8% (95% CI 93.3-98.4), with a sensitivity of 95.6% (95% CI 84.9-99.5), and specificity of 88.1% (95% CI 81.8-92.8). CONCLUSION: The PFN-CNN showed excellent performance in classifying typical PFNs. Its agreement with radiologically trained readers is within the range of inter-reader agreement. Thus, the CNN-based system has potential in clinical and screening settings to rule out perifissural nodules and increase reader efficiency. KEY POINTS: • Agreement between the PFN-CNN and radiologically trained readers is within the range of inter-reader agreement. • The CNN model for the classification of typical PFNs achieved an AUC of 95.8% (95% CI 93.3-98.4) with 95.6% (95% CI 84.9-99.5) sensitivity and 88.1% (95% CI 81.8-92.8) specificity compared to the consensus of three readers.


Subject(s)
Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Netherlands , Solitary Pulmonary Nodule/diagnostic imaging
10.
Eur J Epidemiol ; 35(1): 75-86, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31016436

ABSTRACT

Lung cancer, chronic obstructive pulmonary disease (COPD), and coronary artery disease (CAD) are expected to cause most deaths by 2050. State-of-the-art computed tomography (CT) allows early detection of lung cancer and simultaneous evaluation of imaging biomarkers for the early stages of COPD, based on pulmonary density and bronchial wall thickness, and of CAD, based on the coronary artery calcium score (CACS), at low radiation dose. To determine cut-off values for positive tests for elevated risk and presence of disease is one of the major tasks before considering implementation of CT screening in a general population. The ImaLife (Imaging in Lifelines) study, embedded in the Lifelines study, is designed to establish the reference values of the imaging biomarkers for the big three diseases in a well-defined general population aged 45 years and older. In total, 12,000 participants will undergo CACS and chest acquisitions with latest CT technology. The estimated percentage of individuals with lung nodules needing further workup is around 1-2%. Given the around 10% prevalence of COPD and CAD in the general population, the expected number of COPD and CAD is around 1000 each. So far, nearly 4000 participants have been included. The ImaLife study will allow differentiation between normal aging of the pulmonary and cardiovascular system and early stages of the big three diseases based on low-dose CT imaging. This information can be finally integrated into personalized precision health strategies in the general population.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Early Detection of Cancer , Lung Neoplasms/diagnostic imaging , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Mass Screening , Middle Aged , Population Surveillance , Predictive Value of Tests
11.
Thorax ; 74(3): 247-253, 2019 03.
Article in English | MEDLINE | ID: mdl-30591535

ABSTRACT

BACKGROUND: The US guidelines recommend low-dose CT (LDCT) lung cancer screening for high-risk individuals. New solid nodules after baseline screening are common and have a high lung cancer probability. Currently, no evidence exists concerning the risk stratification of non-resolving new solid nodules at first LDCT screening after initial detection. METHODS: In the Dutch-Belgian Randomized Lung Cancer Screening (NELSON) trial, 7295 participants underwent the second and 6922 participants the third screening round. We included participants with solid nodules that were registered as new or <15 mm³ (study detection limit) at previous screens and received additional screening after initial detection, thereby excluding high-risk nodules according to the NELSON management protocol (nodules ≥500 mm3). RESULTS: Overall, 680 participants with 1020 low-risk and intermediate-risk new solid nodules were included. A total of 562 (55%) new solid nodules were resolving, leaving 356 (52%) participants with a non-resolving new solid nodule, of whom 25 (7%) were diagnosed with lung cancer. At first screening after initial detection, volume doubling time (VDT), volume, and VDT combined with a predefined ≥200 mm3 volume cut-off had high discrimination for lung cancer (VDT, area under the curve (AUC): 0.913; volume, AUC: 0.875; VDT and ≥200 mm3 combination, AUC: 0.939). Classifying a new solid nodule with either ≤590 days VDT or ≥200 mm3 volume positive provided 100% sensitivity, 84% specificity and 27% positive predictive value for lung cancer. CONCLUSIONS: More than half of new low-risk and intermediate-risk solid nodules in LDCT lung cancer screening resolve. At follow-up, growth assessment potentially combined with a volume limit can be used for risk stratification. TRIAL REGISTRATION NUMBER: ISRCTN63545820; pre-results.


Subject(s)
Early Detection of Cancer , Lung Neoplasms/diagnosis , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/epidemiology , Aged , Belgium , Cohort Studies , Female , Humans , Incidence , Male , Middle Aged , Netherlands , Sensitivity and Specificity , Tomography, X-Ray Computed
12.
Thorax ; 73(8): 779-781, 2018 08.
Article in English | MEDLINE | ID: mdl-29056601

ABSTRACT

We studied 2240 indeterminate solid nodules (volume 50-500mm3) to determine the correlation of diameter and semi-automated volume measurements for pulmonary nodule size estimation. Intra-nodular diameter variation, defined as maximum minus minimum diameter through the nodule's center, varied by 2.8 mm (median, IQR:2.2-3.7 mm), so above the 1.5 mm cutoff for nodule growth used in Lung CT Screening Reporting and Data System (Lung-RADS). Using mean or maximum axial diameter to assess nodule volume led to a substantial mean overestimation of nodule volume of 47.2% and 85.1%, respectively, compared to semi-automated volume. Thus, size of indeterminate nodules is poorly represented by diameter. TRIAL REGISTRATION NUMBER: Pre-results, ISRCTN63545820.


Subject(s)
Lung Neoplasms/diagnostic imaging , Mass Screening , Multiple Pulmonary Nodules/diagnostic imaging , Solitary Pulmonary Nodule/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Aged , Belgium , Early Detection of Cancer , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Multiple Pulmonary Nodules/pathology , Netherlands , Radiographic Image Interpretation, Computer-Assisted , Solitary Pulmonary Nodule/pathology
13.
Thorax ; 73(8): 741-747, 2018 08.
Article in English | MEDLINE | ID: mdl-29661918

ABSTRACT

PURPOSE: New nodules after baseline are regularly found in low-dose CT lung cancer screening and have a high lung cancer probability. It is unknown whether morphological and location characteristics can improve new nodule risk stratification by size. METHODS: Solid non-calcified nodules detected during incidence screening rounds of the randomised controlled Dutch-Belgian lung cancer screening (NELSON) trial and registered as new or previously below detection limit (15 mm3) were included. A multivariate logistic regression analysis with lung cancer as outcome was performed, including previously established volume cut-offs (<30 mm3, 30-<200 mm3 and ≥200 mm3) and nodule characteristics (location, distribution, shape, margin and visibility <15 mm3 in retrospect). RESULTS: Overall, 1280 new nodules were included with 73 (6%) being lung cancer. Of nodules ≥30 mm3 at detection and visible <15 mm3 in retrospect, 22% (6/27) were lung cancer. Discrimination based on volume cut-offs (area under the receiver operating characteristic curve (AUC): 0.80, 95% CI 0.75 to 0.84) and continuous volume (AUC: 0.82, 95% CI 0.77 to 0.87) was similar. After adjustment for volume cut-offs, only location in the right upper lobe (OR 2.0, P=0.012), central distribution (OR 2.4, P=0.001) and visibility <15 mm3 in retrospect (OR 4.7, P=0.003) remained significant predictors for lung cancer. The Hosmer-Lemeshow test (P=0.75) and assessment of bootstrap calibration curves indicated adequate model fit. Discrimination based on the continuous model probability (AUC: 0.85, 95% CI 0.81 to 0.89) was superior to volume cut-offs alone, but when stratified into three risk groups (AUC: 0.82, 95% CI 0.78 to 0.86), discrimination was similar. CONCLUSION: Contrary to morphological nodule characteristics, growth-independent characteristics may further improve volume-based new nodule lung cancer prediction, but in a three-category stratification approach, this is limited. TRIAL REGISTRATION NUMBER: ISRCTN63545820; pre-results.


Subject(s)
Lung Neoplasms/diagnostic imaging , Multiple Pulmonary Nodules/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Belgium/epidemiology , Diagnosis, Differential , Early Detection of Cancer , Female , Humans , Incidence , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Male , Mass Screening , Middle Aged , Multiple Pulmonary Nodules/epidemiology , Multiple Pulmonary Nodules/pathology , Netherlands/epidemiology , Radiographic Image Interpretation, Computer-Assisted
15.
Lancet Oncol ; 18(12): e754-e766, 2017 12.
Article in English | MEDLINE | ID: mdl-29208441

ABSTRACT

Lung cancer screening with low-dose CT can save lives. This European Union (EU) position statement presents the available evidence and the major issues that need to be addressed to ensure the successful implementation of low-dose CT lung cancer screening in Europe. This statement identified specific actions required by the European lung cancer screening community to adopt before the implementation of low-dose CT lung cancer screening. This position statement recommends the following actions: a risk stratification approach should be used for future lung cancer low-dose CT programmes; that individuals who enter screening programmes should be provided with information on the benefits and harms of screening, and smoking cessation should be offered to all current smokers; that management of detected solid nodules should use semi-automatically measured volume and volume-doubling time; that national quality assurance boards should be set up to oversee technical standards; that a lung nodule management pathway should be established and incorporated into clinical practice with a tailored screening approach; that non-calcified baseline lung nodules greater than 300 mm3, and new lung nodules greater than 200 mm3, should be managed in multidisciplinary teams according to this EU position statement recommendations to ensure that patients receive the most appropriate treatment; and planning for implementation of low-dose CT screening should start throughout Europe as soon as possible. European countries need to set a timeline for implementing lung cancer screening.


Subject(s)
Early Detection of Cancer/standards , Lung Neoplasms/diagnosis , Mass Screening/standards , Practice Guidelines as Topic , Tomography, X-Ray Computed/methods , Europe , Female , Humans , Incidence , Lung Neoplasms/epidemiology , Male
16.
Thorax ; 72(1): 48-56, 2017 01.
Article in English | MEDLINE | ID: mdl-27364640

ABSTRACT

BACKGROUND: In the USA annual lung cancer screening is recommended. However, the optimal screening strategy (eg, screening interval, screening rounds) is unknown. This study provides results of the fourth screening round after a 2.5-year interval in the Dutch-Belgian Lung Cancer Screening trial (NELSON). METHODS: Europe's largest, sufficiently powered randomised lung cancer screening trial was designed to determine whether low-dose CT screening reduces lung cancer mortality by ≥25% compared with no screening after 10 years of follow-up. The screening arm (n=7915) received screening at baseline, after 1 year, 2 years and 2.5 years. Performance of the NELSON screening strategy in the final fourth round was evaluated. Comparisons were made between lung cancers detected in the first three rounds, in the final round and during the 2.5-year interval. RESULTS: In round 4, 46 cancers were screen-detected and there were 28 interval cancers between the third and fourth screenings. Compared with the second round screening (1-year interval), in round 4 a higher proportion of stage IIIb/IV cancers (17.3% vs 6.8%, p=0.02) and higher proportions of squamous-cell, bronchoalveolar and small-cell carcinomas (p=0.001) were detected. Compared with a 2-year interval, the 2.5-year interval showed a higher non-significant stage distribution (stage IIIb/IV 17.3% vs 5.2%, p=0.10). Additionally, more interval cancers manifested in the 2.5-year interval than in the intervals of previous rounds (28 vs 5 and 28 vs 19). CONCLUSIONS: A 2.5-year interval reduced the effect of screening: the interval cancer rate was higher compared with the 1-year and 2-year intervals, and proportion of advanced disease stage in the final round was higher compared with the previous rounds. TRIAL REGISTRATION NUMBER: ISRCTN63545820.


Subject(s)
Carcinoma, Squamous Cell/diagnostic imaging , Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Small Cell Lung Carcinoma/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Carcinoma, Squamous Cell/secondary , Female , Humans , Male , Middle Aged , Neoplasm Staging , Small Cell Lung Carcinoma/secondary , Time Factors
17.
Thorax ; 72(9): 819-824, 2017 09.
Article in English | MEDLINE | ID: mdl-28360223

ABSTRACT

BACKGROUND: Debate about the optimal lung cancer screening strategy is ongoing. In this study, previous screening history of the Dutch-Belgian Lung Cancer Screening trial (NELSON) is investigated on if it predicts the screening outcome (test result and lung cancer risk) of the final screening round. METHODS: 15 792 participants were randomised (1:1) of which 7900 randomised into a screening group. CT screening took place at baseline, and after 1, 2 and 2.5 years. Initially, three screening outcomes were possible: negative, indeterminate or positive scan result. Probability for screening outcome in the fourth round was calculated for subgroups of participants. RESULTS: Based on results of the first three rounds, three subgroups were identified: (1) those with exclusively negative results (n=3856; 73.0%); (2) those with ≥1 indeterminate result, but never a positive result (n=1342; 25.5%); and (3) with ≥1 positive result (n=81; 1.5%). Group 1 had the highest probability for having a negative scan result in round 4 (97.2% vs 94.8% and 90.1%, respectively, p<0.001), and the lowest risk for detecting lung cancer in round 4 (0.6% vs 1.6%, p=0.001). 'Smoked pack-years' and 'screening history' significantly predicted the fourth round test result. The third round results implied that the risk for detecting lung cancer (after an interval of 2.5 years) was 0.6% for those with negative results compared with 3.7% of those with indeterminate results. CONCLUSIONS: Previous CT lung cancer screening results provides an opportunity for further risk stratifications of those who undergo lung cancer screening. TRIAL REGISTRATION NUMBER: Results, ISRCTN63545820.


Subject(s)
Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Age Factors , Aged , Belgium/epidemiology , Female , Follow-Up Studies , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Male , Middle Aged , Netherlands/epidemiology , Risk Assessment/methods , Risk Factors , Smoking/adverse effects , Smoking/epidemiology , Tomography, X-Ray Computed/methods
18.
Lancet Oncol ; 17(7): 907-916, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27283862

ABSTRACT

BACKGROUND: US guidelines now recommend lung cancer screening with low-dose CT for high-risk individuals. Reports of new nodules after baseline screening have been scarce and are inconsistent because of differences in definitions used. We aimed to identify the occurrence of new solid nodules and their probability of being lung cancer at incidence screening rounds in the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON). METHODS: In the ongoing, multicentre, randomised controlled NELSON trial, between Dec 23, 2003, and July 6, 2006, 15 822 participants who had smoked at least 15 cigarettes a day for more than 25 years or ten cigarettes a day for more than 30 years and were current smokers, or had quit smoking less than 10 years ago, were enrolled and randomly assigned to receive either screening with low-dose CT (n=7915) or no screening (n=7907). From Jan 28, 2004, to Dec 18, 2006, 7557 individuals underwent baseline screening with low-dose CT; 7295 participants underwent second and third screening rounds. We included all participants with solid non-calcified nodules, registered by the NELSON radiologists as new or smaller than 15 mm(3) (study detection limit) at previous screens. Nodule volume was generated semiautomatically by software. We calculated the maximum volume doubling time for nodules with an estimated percentage volume change of 25% or more, representing the minimum growth rate for the time since the previous scan. Lung cancer diagnosis was based on histology, and benignity was based on histology or stable size for at least 2 years. The NELSON trial is registered at trialregister.nl, number ISRCTN63545820. FINDINGS: We analysed data for participants with at least one solid non-calcified nodule at the second or third screening round. In the two incidence screening rounds, the NELSON radiologists registered 1222 new solid nodules in 787 (11%) participants. A new solid nodule was lung cancer in 49 (6%) participants with new solid nodules and, in total, 50 lung cancers were found, representing 4% of all new solid nodules. 34 (68%) lung cancers were diagnosed at stage I. Nodule volume had a high discriminatory power (area under the receiver operating curve 0·795 [95% CI 0·728-0·862]; p<0·0001). Nodules smaller than 27 mm(3) had a low probability of lung cancer (two [0·5%] of 417 nodules; lung cancer probability 0·5% [95% CI 0·0-1·9]), nodules with a volume of 27 mm(3) up to 206 mm(3) had an intermediate probability (17 [3·1%] of 542 nodules; lung cancer probability 3·1% [1·9-5·0]), and nodules of 206 mm(3) or greater had a high probability (29 [16·9%] of 172 nodules; lung cancer probability 16·9% [12·0-23·2]). A volume cutoff value of 27 mm(3) or greater had more than 95% sensitivity for lung cancer. INTERPRETATION: Our study shows that new solid nodules are detected at each screening round in 5-7% of individuals who undergo screening for lung cancer with low-dose CT. These new nodules have a high probability of malignancy even at a small size. These findings should be considered in future screening guidelines, and new solid nodules should be followed up more aggressively than nodules detected at baseline screening. FUNDING: Zorgonderzoek Nederland Medische Wetenschappen and Koningin Wilhelmina Fonds Kankerbestrijding.


Subject(s)
Early Detection of Cancer , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Multiple Pulmonary Nodules/epidemiology , Multiple Pulmonary Nodules/pathology , Tomography, X-Ray Computed/methods , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/epidemiology , Adenocarcinoma/pathology , Aged , Belgium/epidemiology , Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/pathology , Female , Follow-Up Studies , Humans , Incidence , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Multiple Pulmonary Nodules/diagnostic imaging , Neoplasm Staging , Netherlands/epidemiology , Probability , Prognosis , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/epidemiology , Small Cell Lung Carcinoma/pathology , Software
19.
Eur Radiol ; 25(3): 792-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25366707

ABSTRACT

OBJECTIVE: To evaluate the impact of radiological expertise on screen result decisions in a CT lung cancer screening trial. METHODS: In the NELSON lung cancer screening trial, the baseline CT result was based on the largest lung nodule's volume. The protocol allowed radiologists to manually adjust screen results in cases of high suspicion of benign or malignant nodule nature. Participants whose baseline CT result was based on a solid or part-solid nodule were included in this study. Adjustments by radiologists at baseline were evaluated. Histology was the reference for diagnosis or to confirm benignity and stability on subsequent CT examinations. RESULTS: A total of 3,318 participants (2,796 male, median age 58.0 years) were included. In 195 participants (5.9 %) the initial baseline screen result was adjusted by the radiologist. Adjustment was downwards from positive or indeterminate to negative in two and 119 participants, respectively, and from positive to indeterminate in 65 participants. None of these nodules turned out to be malignant. In 9/195 participants (4.6 %) the screen result was adjusted upwards from negative to indeterminate or indeterminate to positive; two nodules were malignant. CONCLUSION: In one in 20 cases of baseline lung cancer screening, nodules were reclassified by the radiologist, leading to a reduction of false-positive screen results.


Subject(s)
Clinical Competence/standards , Early Detection of Cancer/standards , Lung Neoplasms/diagnostic imaging , Radiology/standards , Tomography, X-Ray Computed/standards , Aged , Early Detection of Cancer/methods , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Organ Size , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/pathology , Tomography, X-Ray Computed/methods
20.
Lancet Oncol ; 15(12): 1342-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25282284

ABSTRACT

BACKGROUND: Low-dose CT screening is recommended for individuals at high risk of developing lung cancer. However, CT screening does not detect all lung cancers: some might be missed at screening, and others can develop in the interval between screens. The NELSON trial is a randomised trial to assess the effect of screening with increasing screening intervals on lung cancer mortality. In this prespecified analysis, we aimed to assess screening test performance, and the epidemiological, radiological, and clinical characteristics of interval cancers in NELSON trial participants assigned to the screening group. METHODS: Eligible participants in the NELSON trial were those aged 50-75 years, who had smoked 15 or more cigarettes per day for more than 25 years or ten or more cigarettes for more than 30 years, and were still smoking or had quit less than 10 years ago. We included all participants assigned to the screening group who had attended at least one round of screening. Screening test results were based on volumetry using a two-step approach. Initially, screening test results were classified as negative, indeterminate, or positive based on nodule presence and volume. Subsequently, participants with an initial indeterminate result underwent follow-up screening to classify their final screening test result as negative or positive, based on nodule volume doubling time. We obtained information about all lung cancer diagnoses made during the first three rounds of screening, plus an additional 2 years of follow-up from the national cancer registry. We determined epidemiological, radiological, participant, and tumour characteristics by reassessing medical files, screening CTs, and clinical CTs. The NELSON trial is registered at www.trialregister.nl, number ISRCTN63545820. FINDINGS: 15,822 participants were enrolled in the NELSON trial, of whom 7915 were assigned to low-dose CT screening with increasing interval between screens, and 7907 to no screening. We included 7155 participants in our study, with median follow-up of 8·16 years (IQR 7·56-8·56). 187 (3%) of 7155 screened participants were diagnosed with 196 screen-detected lung cancers, and another 34 (<1%; 19 [56%] in the first year after screening, and 15 [44%] in the second year after screening) were diagnosed with 35 interval cancers. For the three screening rounds combined, with a 2-year follow-up, sensitivity was 84·6% (95% CI 79·6-89·2), specificity was 98·6% (95% CI 98·5-98·8), positive predictive value was 40·4% (95% CI 35·9-44·7), and negative predictive value was 99·8% (95% CI 99·8-99·9). Retrospective assessment of the last screening CT and clinical CT in 34 patients with interval cancer showed that interval cancers were not visible in 12 (35%) cases. In the remaining cases, cancers were visible when retrospectively assessed, but were not diagnosed because of radiological detection and interpretation errors (17 [50%]), misclassification by the protocol (two [6%]), participant non-compliance (two [6%]), and non-adherence to protocol (one [3%]). Compared with screen-detected cancers, interval cancers were diagnosed at more advanced stages (29 [83%] of 35 interval cancers vs 44 [22%] of 196 screen-detected cancers diagnosed in stage III or IV; p<0·0001), were more often small-cell carcinomas (seven [20%] vs eight [4%]; p=0·003) and less often adenocarcinomas (nine [26%] vs 102 [52%]; p=0·005). INTERPRETATION: Lung cancer screening in the NELSON trial yielded high specificity and sensitivity, with only a small number of interval cancers. The results of this study could be used to improve screening algorithms, and reduce the number of missed cancers. FUNDING: Zorgonderzoek Nederland Medische Wetenschappen and Koningin Wilhelmina Fonds.


Subject(s)
Early Detection of Cancer , Lung Neoplasms/diagnosis , Tomography, X-Ray Computed , Aged , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Middle Aged , Retrospective Studies , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL