Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Rev Mol Cell Biol ; 25(4): 251, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37993689
2.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32059760

ABSTRACT

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Subject(s)
Alternative Splicing , Body Temperature Regulation/genetics , Gene Expression , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Reptiles/genetics , Animals , Biological Evolution , HEK293 Cells , Humans , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/physiology , Reptiles/metabolism , Serine-Arginine Splicing Factors/metabolism
3.
Mol Cell ; 67(3): 433-446.e4, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28689656

ABSTRACT

The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks.


Subject(s)
Alternative Splicing , Body Temperature Regulation , Circadian Clocks , Circadian Rhythm , TATA-Box Binding Protein/metabolism , 5' Untranslated Regions , Animals , Cell Line, Tumor , Exons , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phosphorylation , RNA Interference , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , TATA-Box Binding Protein/genetics , Time Factors , Transfection
4.
Biochem J ; 481(15): 999-1013, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39083035

ABSTRACT

Temperature-dependent alternative splicing (AS) is a crucial mechanism for organisms to adapt to varying environmental temperatures. In mammals, even slight fluctuations in body temperature are sufficient to drive significant AS changes in a concerted manner. This dynamic regulation allows organisms to finely tune gene expression and protein isoform diversity in response to temperature cues, ensuring proper cellular function and physiological adaptation. Understanding the molecular mechanisms underlying temperature-dependent AS thus provides valuable insights into the intricate interplay between environmental stimuli and gene expression regulation. In this review, we provide an overview of recent advances in understanding temperature-regulated AS across various biological processes and systems. We will discuss the machinery sensing and translating temperature cues into changed AS patterns, the adaptation of the splicing regulatory machinery to extreme temperatures, the role of temperature-dependent AS in shaping the transcriptome, functional implications and the development of potential therapeutics targeting temperature-sensitive AS pathways.


Subject(s)
Alternative Splicing , Transcriptome , Animals , Humans , Temperature , Body Temperature Regulation/genetics , Body Temperature Regulation/physiology , Gene Expression Regulation
5.
Nucleic Acids Res ; 51(19): 10218-10237, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37697438

ABSTRACT

The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.


Subject(s)
Neocortex , Receptor, trkC , Animals , Alternative Splicing , Mammals/metabolism , Neocortex/metabolism , Neurons/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, trkC/chemistry , Receptor, trkC/genetics , Receptor, trkC/metabolism , Mice , Cell Line, Tumor
6.
Nucleic Acids Res ; 50(12): 6769-6785, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35713540

ABSTRACT

Antiviral innate immunity represents the first defense against invading viruses and is key to control viral infections, including SARS-CoV-2. Body temperature is an omnipresent variable but was neglected when addressing host defense mechanisms and susceptibility to SARS-CoV-2 infection. Here, we show that increasing temperature in a 1.5°C window, between 36.5 and 38°C, strongly increases the expression of genes in two branches of antiviral immunity, nitric oxide production and type I interferon response. We show that alternative splicing coupled to nonsense-mediated decay decreases STAT2 expression in colder conditions and suggest that increased STAT2 expression at elevated temperature induces the expression of diverse antiviral genes and SARS-CoV-2 restriction factors. This cascade is activated in a remarkably narrow temperature range below febrile temperature, which reflects individual, circadian and age-dependent variation. We suggest that decreased body temperature with aging contributes to reduced expression of antiviral genes in older individuals. Using cell culture and in vivo models, we show that higher body temperature correlates with reduced SARS-CoV-2 replication, which may affect the different vulnerability of children versus seniors toward severe SARS-CoV-2 infection. Altogether, our data connect body temperature and pre-mRNA processing to provide new mechanistic insight into the regulation of antiviral innate immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Aged , SARS-CoV-2/genetics , Antiviral Agents , RNA Precursors/genetics , Body Temperature , COVID-19/genetics
7.
Biochem Biophys Res Commun ; 653: 31-37, 2023 04 23.
Article in English | MEDLINE | ID: mdl-36854218

ABSTRACT

RNA-Seq has become the standard approach to quantify and compare gene expression and alternative splicing in different conditions. In many cases the limiting factor is not the sequencing itself but the bioinformatic analysis. A variety of software tools exist that predict alternative splicing patterns from RNA-Seq data, but surprisingly, a systematic comparison of the predictions obtained from different pipelines has not been performed. Here we compare results from frequently used bioinformatic tools using a high-quality RNA-Seq dataset. We show that there is little overlap in the splicing changes predicted by different tools and that GO-term analysis of the splicing changes predicted by the individual targets yields very different results. Validation of bioinformatic predictions by RT-PCR suggest a high number of false positives in the splicing changes predicated by each pipeline, which probably dominates GO-term analysis. The validation rate is strongly increased for targets predicted by several tools, offering a strategy to reduce false positives. Based on these results we offer some guidelines that may contribute to make alternative splicing predictions more reliable and may thus increase the impact of conclusions drawn from RNA-Seq studies. Furthermore, we created rmappet, a nextflow pipeline that performs alternative splicing analysis using rMATS and Whippet with subsequent overlapping of the results, enabling robust splicing analysis with only one command (https://github.com/didrikolofsson/rmappet/).


Subject(s)
Alternative Splicing , High-Throughput Nucleotide Sequencing , Alternative Splicing/genetics , RNA-Seq , Sequence Analysis, RNA/methods , High-Throughput Nucleotide Sequencing/methods , RNA Splicing , Software
8.
Nucleic Acids Res ; 49(20): 11708-11727, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34718714

ABSTRACT

RNA-binding proteins regulate mRNA processing and translation and are often aberrantly expressed in cancer. The RNA-binding motif protein 6, RBM6, is a known alternative splicing factor that harbors tumor suppressor activity and is frequently mutated in human cancer. Here, we identify RBM6 as a novel regulator of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Mechanistically, we show that RBM6 regulates alternative splicing-coupled nonstop-decay of a positive HR regulator, Fe65/APBB1. RBM6 knockdown leads to a severe reduction in Fe65 protein levels and consequently impairs HR of DSBs. Accordingly, RBM6-deficient cancer cells are vulnerable to ATM and PARP inhibition and show remarkable sensitivity to cisplatin. Concordantly, cisplatin administration inhibits the growth of breast tumor devoid of RBM6 in mouse xenograft model. Furthermore, we observe that RBM6 protein is significantly lost in metastatic breast tumors compared with primary tumors, thus suggesting RBM6 as a potential therapeutic target of advanced breast cancer. Collectively, our results elucidate the link between the multifaceted roles of RBM6 in regulating alternative splicing and HR of DSBs that may contribute to tumorigenesis, and pave the way for new avenues of therapy for RBM6-deficient tumors.


Subject(s)
DNA Breaks, Double-Stranded , Drug Resistance, Neoplasm , Homologous Recombination , RNA-Binding Proteins/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line , Cisplatin/therapeutic use , Cisplatin/toxicity , Female , HCT116 Cells , Humans , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mice , Mice, SCID , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , RNA Stability , RNA-Binding Proteins/genetics , Triple Negative Breast Neoplasms/metabolism
9.
Genes Dev ; 29(24): 2576-87, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26637280

ABSTRACT

The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation.


Subject(s)
Models, Molecular , RNA Helicases/chemistry , RNA Helicases/metabolism , Ribonucleoproteins, Small Nuclear/chemistry , Ribonucleoproteins, Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/enzymology , Adenosine Triphosphatases/metabolism , Chaetomium/enzymology , Chaetomium/genetics , Crystallization , Humans , Protein Binding , Protein Folding , Protein Splicing , Protein Structure, Quaternary , Protein Structure, Tertiary , RNA Helicases/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Spliceosomes/genetics
10.
Genet Med ; 24(9): 1927-1940, 2022 09.
Article in English | MEDLINE | ID: mdl-35670808

ABSTRACT

PURPOSE: In this study we aimed to identify the molecular genetic cause of a progressive multisystem disease with prominent lipodystrophy. METHODS: In total, 5 affected individuals were investigated using exome sequencing. Dermal fibroblasts were characterized using RNA sequencing, proteomics, immunoblotting, immunostaining, and electron microscopy. Subcellular localization and rescue studies were performed. RESULTS: We identified a lipodystrophy phenotype with a typical facial appearance, corneal clouding, achalasia, progressive hearing loss, and variable severity. Although 3 individuals showed stunted growth, intellectual disability, and died within the first decade of life (A1, A2, and A3), 2 are adults with normal intellectual development (A4 and A5). All individuals harbored an identical homozygous nonsense variant affecting the retention and splicing complex component BUD13. The nucleotide substitution caused alternative splicing of BUD13 leading to a stable truncated protein whose expression positively correlated with disease expression and life expectancy. In dermal fibroblasts, we found elevated intron retention, a global reduction of spliceosomal proteins, and nuclei with multiple invaginations, which were more pronounced in A1, A2, and A3. Overexpression of both BUD13 isoforms normalized the nuclear morphology. CONCLUSION: Our results define a hitherto unknown syndrome and show that the alternative splice product converts a loss-of-function into a hypomorphic allele, thereby probably determining the severity of the disease and the survival of affected individuals.


Subject(s)
Alternative Splicing , Lipodystrophy , RNA-Binding Proteins/genetics , Child , Developmental Disabilities/genetics , Humans , Introns , Lipodystrophy/genetics , RNA Splicing
11.
EMBO Rep ; 21(12): e51369, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33140569

ABSTRACT

Mammalian body temperature oscillates with the time of the day and is altered in diverse pathological conditions. We recently identified a body temperature-sensitive thermometer-like kinase, which alters SR protein phosphorylation and thereby globally controls alternative splicing (AS). AS can generate unproductive variants which are recognized and degraded by diverse mRNA decay pathways-including nonsense-mediated decay (NMD). Here we show extensive coupling of body temperature-controlled AS to mRNA decay, leading to global control of temperature-dependent gene expression (GE). Temperature-controlled, decay-inducing splicing events are evolutionarily conserved and pervasively found within RNA-binding proteins, including most SR proteins. AS-coupled poison exon inclusion is essential for rhythmic GE of SR proteins and has a global role in establishing temperature-dependent rhythmic GE profiles, both in mammals under circadian body temperature cycles and in plants in response to ambient temperature changes. Together, these data identify body temperature-driven AS-coupled mRNA decay as an evolutionary ancient, core clock-independent mechanism to generate rhythmic GE.


Subject(s)
Alternative Splicing , Transcriptome , Animals , Exons/genetics , Nonsense Mediated mRNA Decay , Temperature
12.
Nature ; 540(7631): 69-73, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27871090

ABSTRACT

Organisms use endogenous clocks to anticipate regular environmental cycles, such as days and tides. Natural variants resulting in differently timed behaviour or physiology, known as chronotypes in humans, have not been well characterized at the molecular level. We sequenced the genome of Clunio marinus, a marine midge whose reproduction is timed by circadian and circalunar clocks. Midges from different locations show strain-specific genetic timing adaptations. We examined genetic variation in five C. marinus strains from different locations and mapped quantitative trait loci for circalunar and circadian chronotypes. The region most strongly associated with circadian chronotypes generates strain-specific differences in the abundance of calcium/calmodulin-dependent kinase II.1 (CaMKII.1) splice variants. As equivalent variants were shown to alter CaMKII activity in Drosophila melanogaster, and C. marinus (Cma)-CaMKII.1 increases the transcriptional activity of the dimer of the circadian proteins Cma-CLOCK and Cma-CYCLE, we suggest that modulation of alternative splicing is a mechanism for natural adaptation in circadian timing.


Subject(s)
Acclimatization/genetics , Chironomidae/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Genome, Insect/genetics , Genomics , Tidal Waves , Alternative Splicing/genetics , Animals , CLOCK Proteins/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Chironomidae/classification , Chironomidae/physiology , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Genetic Association Studies , Genetic Variation , Male , Moon , Phenotype , Quantitative Trait Loci/genetics , Reproduction/genetics , Reproduction/physiology , Species Specificity , Time Factors , Transcription, Genetic
13.
Mol Cell ; 54(4): 651-62, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24837677

ABSTRACT

The circadian clock drives daily rhythms in gene expression to control metabolism, behavior, and physiology; while the underlying transcriptional feedback loops are well defined, the impact of alternative splicing on circadian biology remains poorly understood. Here we describe a robust circadian and light-inducible splicing switch that changes the reading frame of the mouse mRNA encoding U2-auxiliary-factor 26 (U2AF26). This results in translation far into the 3' UTR, generating a C terminus with homology to the Drosophila clock regulator TIMELESS. This new U2AF26 variant destabilizes PERIOD1 protein, and U2AF26-deficient mice show nearly arrhythmic PERIOD1 protein levels and broad defects in circadian mRNA expression in peripheral clocks. At the behavioral level, these mice display increased phase advance adaptation following experimental jet lag. These data suggest light-induced U2af26 alternative splicing to be a buffering mechanism that limits PERIOD1 induction, thus stabilizing the circadian clock against abnormal changes in light:dark conditions.


Subject(s)
Alternative Splicing , Circadian Clocks , Circadian Rhythm , Frameshift Mutation , Period Circadian Proteins/metabolism , RNA, Messenger/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Animals , Behavior, Animal/radiation effects , Brain/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Circadian Clocks/genetics , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Liver/metabolism , Mice , Mice, Transgenic , NIH 3T3 Cells , Protein Stability , RNA, Messenger/genetics , Splicing Factor U2AF
14.
Nucleic Acids Res ; 48(8): 4572-4584, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32196113

ABSTRACT

The single G protein of the spliceosome, Snu114, has been proposed to facilitate splicing as a molecular motor or as a regulatory G protein. However, available structures of spliceosomal complexes show Snu114 in the same GTP-bound state, and presently no Snu114 GTPase-regulatory protein is known. We determined a crystal structure of Snu114 with a Snu114-binding region of the Prp8 protein, in which Snu114 again adopts the same GTP-bound conformation seen in spliceosomes. Snu114 and the Snu114-Prp8 complex co-purified with endogenous GTP. Snu114 exhibited weak, intrinsic GTPase activity that was abolished by the Prp8 Snu114-binding region. Exchange of GTP-contacting residues in Snu114, or of Prp8 residues lining the Snu114 GTP-binding pocket, led to temperature-sensitive yeast growth and affected the same set of splicing events in vivo. Consistent with dynamic Snu114-mediated protein interactions during splicing, our results suggest that the Snu114-GTP-Prp8 module serves as a relay station during spliceosome activation and disassembly, but that GTPase activity may be dispensable for splicing.


Subject(s)
Guanosine Triphosphate/chemistry , RNA Splicing , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Ribonucleoprotein, U5 Small Nuclear/chemistry , Saccharomyces cerevisiae Proteins/chemistry , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Models, Molecular , Protein Conformation , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism
15.
J Cell Sci ; 132(8)2019 04 25.
Article in English | MEDLINE | ID: mdl-30890649

ABSTRACT

Alternative splicing (AS) strongly increases proteome diversity and functionality in eukaryotic cells. Protein secretion is a tightly controlled process, especially when it occurs in a tissue-specific and differentiation-dependent manner. While previous work has focussed on transcriptional and post-translational regulatory mechanisms, the impact of AS on the secretory pathway remains largely unexplored. Here, we integrate results from a published screen for modulators of protein transport and RNA-Seq analyses to identify over 200 AS events as secretion regulators. We confirm that splicing events along all stages of the secretory pathway regulate the efficiency of membrane trafficking using morpholino and CRISPR/Cas9 experiments. We furthermore show that these events are highly tissue-specific and mediate an adaptation of the secretory pathway during T-cell activation and adipocyte differentiation. Our data substantially advance the understanding of AS functionality, add a new regulatory layer to a fundamental cell biological process and provide a resource of alternative isoforms that control the secretory pathway.


Subject(s)
Alternative Splicing , Gene Expression Profiling , Protein Transport , Secretory Pathway/genetics , Cell Differentiation/genetics , Genome , Humans , Protein Isoforms/genetics , Sequence Analysis, RNA
16.
Mol Syst Biol ; 16(4): e9367, 2020 04.
Article in English | MEDLINE | ID: mdl-32311237

ABSTRACT

Alternative polyadenylation (APA) is a major layer of gene regulation. However, it has recently been argued that most APA represents molecular noise. To clarify their functional relevance and evolution, we quantified allele-specific APA patterns in multiple tissues from an F1 hybrid mouse. We found a clearly negative correlation between gene expression and APA diversity for the 2,866 genes (24.9%) with a dominant polyadenylation site (PAS) usage above or equal to 90%, suggesting that their other PASs represent molecular errors. Among the remaining genes with multiple PASs, 3,971 genes (34.5%) express two or more isoforms with potentially functional importance. Interestingly, the genes with potentially functional minor PASs specific to neuronal tissues often express two APA isoforms with distinct subcellular localizations. Furthermore, our analysis of cis-APA divergence shows its pattern across tissues is distinct from that of gene expression. Finally, we demonstrate that the relative usage of alternative PASs is not only affected by their cis-regulatory elements, but also by potential coupling between transcriptional and APA regulation as well as competition kinetics between alternative sites.


Subject(s)
Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , Alleles , Animals , Cell Line , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred Strains , Mouse Embryonic Stem Cells , Polyadenylation , Tissue Distribution
17.
Nucleic Acids Res ; 47(11): 5867-5879, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30949712

ABSTRACT

In the yeast U1 snRNP the Prp39/Prp42 heterodimer is essential for early steps of spliceosome assembly. In metazoans no Prp42 ortholog exists, raising the question how the heterodimer is functionally substituted. Here we present the crystal structure of murine PRPF39, which forms a homodimer. Structure-guided point mutations disrupt dimer formation and inhibit splicing, manifesting the homodimer as functional unit. PRPF39 expression is controlled by NMD-inducing alternative splicing in mice and human, suggesting a role in adapting splicing efficiency to cell type specific requirements. A phylogenetic analysis reveals coevolution of shortened U1 snRNA and the absence of Prp42, which correlates with overall splicing complexity in different fungi. While current models correlate the diversity of spliceosomal proteins with splicing complexity, our study highlights a contrary case. We find that organisms with higher splicing complexity have substituted the Prp39/Prp42 heterodimer with a PRPF39 homodimer.


Subject(s)
Nuclear Proteins/physiology , RNA-Binding Proteins/physiology , Ribonucleoprotein, U1 Small Nuclear/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Alternative Splicing , Animals , CD8-Positive T-Lymphocytes/cytology , Dimerization , HEK293 Cells , Humans , Mice , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Open Reading Frames , Phylogeny , Point Mutation , RNA Precursors/metabolism , RNA Splicing , RNA Splicing Factors/genetics , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/chemistry , Ribonucleoprotein, U1 Small Nuclear/metabolism , Saccharomyces cerevisiae/genetics , Spliceosomes/metabolism
18.
J Hepatol ; 73(4): 771-782, 2020 10.
Article in English | MEDLINE | ID: mdl-32376415

ABSTRACT

BACKGROUND & AIMS: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association. METHODS: Recombinant congenic mice carrying 5.3 Mbp of Ltg/NZO were fed a high-fat diet and characterized for liver fat. Bioinformatic analysis, mRNA profiles and electrophoretic mobility shift assays were performed to identify genes responsible for the Ltg/NZO phenotype. Candidate genes were manipulated in vivo by injecting specific microRNAs into C57BL/6 mice. Pulldown coupled with mass spectrometry-based proteomics and immunoprecipitation were performed to identify interaction partners of IFGGA2. RESULTS: Through positional cloning, we identified 2 immunity-related GTPases (Ifgga2, Ifgga4) that prevent hepatic lipid storage. Expression of both murine genes and the human orthologue IRGM was significantly lower in fatty livers. Accordingly, liver-specific suppression of either Ifgga2 or Ifgga4 led to a 3-4-fold greater increase in hepatic fat content. In the liver of low-fat diet-fed mice, IFGGA2 localized to endosomes/lysosomes, while on a high-fat diet it associated with lipid droplets. Pulldown experiments and proteomics identified the lipase ATGL as a binding partner of IFGGA2 which was confirmed by co-immunoprecipitation. Both proteins partially co-localized with the autophagic marker LC3B. Ifgga2 suppression in hepatocytes reduced the amount of LC3B-II, whereas overexpression of Ifgga2 increased the association of LC3B with lipid droplets and decreased triglyceride storage. CONCLUSION: IFGGA2 interacts with ATGL and protects against hepatic steatosis, most likely by enhancing the binding of LC3B to lipid droplets. LAY SUMMARY: The genetic basis of non-alcoholic fatty liver disease remains incompletely defined. Herein, we identified members of the immunity-related GTPase family in mice and humans that act as regulators of hepatic fat accumulation, with links to autophagy. Overexpression of the gene Ifgga2 was shown to reduce hepatic lipid storage and could be a therapeutic target for the treatment of fatty liver disease.


Subject(s)
Fatty Liver/genetics , GTP-Binding Proteins/genetics , Gene Expression Regulation , Hepatocytes/metabolism , Lipase/genetics , Lipid Metabolism/genetics , Microtubule-Associated Proteins/genetics , Animals , Autophagy , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/pathology , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/biosynthesis , Hep G2 Cells , Hepatocytes/pathology , Humans , Lipase/biosynthesis , Lipase/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/biosynthesis , Phenotype , RNA/genetics
19.
Genome Res ; 27(8): 1344-1359, 2017 08.
Article in English | MEDLINE | ID: mdl-28596291

ABSTRACT

The cellular response to genotoxic stress is mediated by a well-characterized network of DNA surveillance pathways. The contribution of post-transcriptional gene regulatory networks to the DNA damage response (DDR) has not been extensively studied. Here, we systematically identified RNA-binding proteins differentially interacting with polyadenylated transcripts upon exposure of human breast carcinoma cells to ionizing radiation (IR). Interestingly, more than 260 proteins, including many nucleolar proteins, showed increased binding to poly(A)+ RNA in IR-exposed cells. The functional analysis of DDX54, a candidate genotoxic stress responsive RNA helicase, revealed that this protein is an immediate-to-early DDR regulator required for the splicing efficacy of its target IR-induced pre-mRNAs. Upon IR exposure, DDX54 acts by increased interaction with a well-defined class of pre-mRNAs that harbor introns with weak acceptor splice sites, as well as by protein-protein contacts within components of U2 snRNP and spliceosomal B complex, resulting in lower intron retention and higher processing rates of its target transcripts. Because DDX54 promotes survival after exposure to IR, its expression and/or mutation rate may impact DDR-related pathologies. Our work indicates the relevance of many uncharacterized RBPs potentially involved in the DDR.


Subject(s)
Breast Neoplasms/genetics , DEAD-box RNA Helicases/genetics , DNA Damage , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , RNA-Binding Proteins/genetics , Transcriptome , Breast Neoplasms/pathology , DNA Repair , Female , Gene Regulatory Networks , Humans , Polyadenylation , RNA Splicing , RNA, Messenger , Radiation, Ionizing , Tumor Cells, Cultured
20.
RNA Biol ; 17(6): 843-856, 2020 06.
Article in English | MEDLINE | ID: mdl-32116123

ABSTRACT

Recent work has associated point mutations in both zinc fingers (ZnF) of the spliceosome component U2AF35 with malignant transformation. However, surprisingly little is known about the functionality of the U2AF35 ZnF domains in general. Here we have analysed key functionalities of the ZnF domains of mammalian U2AF35 and its paralog U2AF26. Both ZnFs are required for splicing regulation, whereas only ZnF2 controls protein stability and contributes to the interaction with U2AF65. These features are confirmed in a naturally occurring splice variant of U2AF26 lacking ZnF2, that is strongly induced upon activation of primary mouse T cells and localized in the cytoplasm. Using Ribo-Seq in a model T cell line we provide evidence for a role of U2AF26 in activating cytoplasmic steps in gene expression, notably translation. Consistently, an MS2 tethering assay shows that cytoplasmic U2AF26/35 increase translation when localized to the 5'UTR of a model mRNA. This regulation is partially dependent on ZnF1 thus providing a connection between a core splicing factor, the ZnF domains and the regulation of translation. Altogether, our work reveals unexpected functions of U2AF26/35 and their ZnF domains, thereby contributing to a better understanding of their role and regulation in mammalian cells.


Subject(s)
Gene Expression Regulation , Protein Biosynthesis , Splicing Factor U2AF/metabolism , Zinc Fingers , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , Protein Binding , RNA Splicing , RNA Stability , Splicing Factor U2AF/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL