Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 215: 10-24, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25458172

ABSTRACT

In order to maintain regulatory processes, animals are expected to be adapted to the range of environmental stressors usually encountered in their environmental niche. The available capacity of their stress responses is termed their reactive scope, which is utilised to a greater or lesser extent to deal with different stressors. Typically, non-invasive hormone assessment is used to measure the physiological stress responses of wild animals, but, for methodological reasons, such measurements are not directly comparable across studies, limiting interpretation. To overcome this constraint, we propose a new measure of the relative strength of stress responses, 'demonstrated reactive scope', and illustrate its use in a study of ecological correlates (climate, food availability) of faecal glucocorticoid (fGC) levels in two forest-living troops of baboons. Results suggest the wild-feeding troop experiences both thermoregulatory and nutritional stress, while the crop-raiding troop experiences only thermoregulatory stress. This difference, together with the crop-raiding troop's lower overall physiological stress levels and lower demonstrated fGC reactive scope, may reflect nutritional stress-buffering in this troop. The relatively high demonstrated fGC reactive scope levels of both troops compared with other baboons and primate species, may reflect their extreme habitat, on the edge of the geographic range for baboons. Demonstrated reactive scope provides a means of gauging the relative strengths of stress responses of individuals, populations, or species under different conditions, enhancing the interpretive capacity of non-invasive studies of stress hormone levels in wild populations, e.g. in terms of animals' adaptive flexibility, the magnitude of their response to anthropogenic change, or the severity of impact of environmental conditions.


Subject(s)
Adaptation, Physiological , Environment , Papio/physiology , Stress, Physiological , Animals , Climate , Ecosystem , Feces/chemistry , Feeding Behavior/physiology , Forests , Glucocorticoids/metabolism , Humans
2.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-37503170

ABSTRACT

Weather-related disasters can radically alter ecosystems. When disaster-driven ecological damage persists, the selective pressures exerted on individuals can change, eventually leading to phenotypic adjustments. For group-living animals, social relationships are believed to help individuals cope with environmental challenges and may be a critical mechanism enabling adaptation to ecosystems degraded by disasters. Yet, whether natural disasters alter selective pressures on patterns of social interactions and whether group-living animals can, as a result, adaptively change their social relationships remains untested. Here, we leveraged unique data collected on rhesus macaques from 5 years before to 5 years after a category 4 hurricane, leading to persistent deforestation which exacerbated monkeys' exposure to intense heat. In response, macaques increased tolerance for and decreased aggression toward other monkeys, facilitating access to scarce shade critical for thermoregulation. Social tolerance predicted individual survival for 5 years after the hurricane, but not before it, revealing a clear shift in the adaptive function of social relationships in this population. We demonstrate that an extreme climatic event altered selection on sociality and triggered substantial and persistent changes in the social structure of a primate species. Our findings unveil the function and adaptive flexibility of social relationships in degraded ecosystems and identify natural disasters as potential evolutionary drivers of sociality. One-Sentence Summary: Testard et al. show that a natural disaster altered selection on sociality in group-living primates triggering persistent changes in their social structure.

3.
Anat Rec (Hoboken) ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367664

ABSTRACT

The origin of primates has long been associated with an increased emphasis on manual grasping and touch. Precision touch, facilitated by specialized mechanoreceptors in glabrous skin, provides critical sensory feedback for grasping-related tasks and perception of ecologically-relevant stimuli. Despite its importance, studies of mechanoreceptors in primate hands are limited, in part due to challenges of sample availability and histological methods. Dermatoglyphs have been proposed as alternative proxies of mechanoreceptor density. We investigated the relationships between mechanoreceptors (Meissner and Pacinian corpuscles), dermatoglyphs, and demography in the apical finger pads of 15 juvenile to adult rhesus macaques (Macaca mulatta) from a free-ranging population at Cayo Santiago Primate Field Station (Puerto Rico). Our results indicate substantial interindividual variation in mechanoreceptor density (Meissner corpuscles: 11.9-43.3 corpuscles/mm2; Pacinian corpuscles: 0-4.5 corpuscles/mm2). While sex and digit were generally not associated with variation, there was strong evidence of a developmental effect. Specifically, apical pad length, Meissner corpuscle size, and Pacinian corpuscle depth increased while mechanoreceptor densities decreased throughout juvenescence, suggesting that primate mechanoreceptors change as fingers grow during adolescence and then stabilize at physical maturity. We also found Meissner corpuscle density was significantly associated with dermatoglyph ridge width and spacing, such that density predicted by a dermatoglyph model was strongly correlated with observed values. Dermatoglyphs thus offer a useful proxy of relative Meissner corpuscle density in primates, which opens exciting avenues of noninvasive research. Finally, our results underscore the importance of considering demographic factors and methodology in comparative studies of primate touch.

4.
Science ; 384(6702): 1330-1335, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38900867

ABSTRACT

Extreme weather events radically alter ecosystems. When ecological damage persists, selective pressures on individuals can change, leading to phenotypic adjustments. For group-living animals, social relationships may be a mechanism enabling adaptation to ecosystem disturbance. Yet whether such events alter selection on sociality and whether group-living animals can, as a result, adaptively change their social relationships remain untested. We leveraged 10 years of data collected on rhesus macaques before and after a category 4 hurricane caused persistent deforestation, exacerbating monkeys' exposure to intense heat. In response, macaques demonstrated persistently increased tolerance and decreased aggression toward other monkeys, facilitating access to scarce shade critical for thermoregulation. Social tolerance predicted individual survival after the hurricane, but not before it, revealing a shift in the adaptive function of sociality.


Subject(s)
Adaptation, Psychological , Aggression , Body Temperature Regulation , Extreme Heat , Macaca mulatta , Animals , Female , Male , Cyclonic Storms , Ecosystem , Macaca mulatta/physiology , Macaca mulatta/psychology , Climate
SELECTION OF CITATIONS
SEARCH DETAIL