Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nature ; 573(7774): 375-380, 2019 09.
Article in English | MEDLINE | ID: mdl-31485080

ABSTRACT

The molecular mechanisms of exon definition and back-splicing are fundamental unanswered questions in pre-mRNA splicing. Here we report cryo-electron microscopy structures of the yeast spliceosomal E complex assembled on introns, providing a view of the earliest event in the splicing cycle that commits pre-mRNAs to splicing. The E complex architecture suggests that the same spliceosome can assemble across an exon, and that it either remodels to span an intron for canonical linear splicing (typically on short exons) or catalyses back-splicing to generate circular RNA (on long exons). The model is supported by our experiments, which show that an E complex assembled on the middle exon of yeast EFM5 or HMRA1 can be chased into circular RNA when the exon is sufficiently long. This simple model unifies intron definition, exon definition, and back-splicing through the same spliceosome in all eukaryotes and should inspire experiments in many other systems to understand the mechanism and regulation of these processes.


Subject(s)
Exons , Introns , Models, Molecular , RNA Splicing , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cryoelectron Microscopy , Protein Structure, Quaternary , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Spliceosomes/metabolism , Spliceosomes/ultrastructure
2.
Mol Cell Proteomics ; 20: 100079, 2021.
Article in English | MEDLINE | ID: mdl-33845168

ABSTRACT

The extracellular matrix is a key component of tissues, yet it is underrepresented in proteomic datasets. Identification and evaluation of proteins in the extracellular matrix (ECM) has proved challenging due to the insolubility of many ECM proteins in traditional protein extraction buffers. Here we separate the decellularization and ECM extraction steps of several prominent methods for evaluation under real-world conditions. The results are used to optimize a two-fraction ECM extraction method. Approximately one dozen additional parameters are tested, and recommendations for analysis based on overall ECM coverage or specific ECM classes are given. Compared with a standard in-solution digest, the optimized method yielded a fourfold improvement in unique ECM peptide identifications.


Subject(s)
Extracellular Matrix Proteins/metabolism , Proteomics/methods , Animals , Extracellular Matrix/metabolism , Male , Mice, Inbred C57BL , Proteome
3.
Hum Mol Genet ; 28(24): 4132-4147, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31646342

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disease, characterized by cyst formation and growth. Hyperproliferation is a major contributor to cyst growth. At the nexus of regulating proliferation, is 4E-BP1. We demonstrate that ADPKD mouse and rat models, ADPKD patient renal biopsies and PKD1-/- cells exhibited hyperphosphorylated 4E-BP1, a biomarker of increased translation and proliferation. We hypothesized that expression of constitutively active 4E-BP1 constructs (4E-BP1F113A and 4E-BP1R13AF113A) would decrease proliferation and reduce cyst expansion. Utilizing the Pkd1RC/RC mouse, we determined the effect of 4E-BP1F113A on PKD. Unexpectedly, 4E-BP1F113A resulted in increased cyst burden and suppressed apoptosis markers, increased anti-apoptotic Bcl-2 protein and increased mitochondrial proteins. Exogenous 4E-BP1 enhanced proliferation, decreased apoptosis, increased anti-apoptotic Bcl-2 protein, impaired NADPH oxidoreductase activity, increased mitochondrial proteins and increased superoxide production in PKD patient-derived renal epithelial cells. Reduced 4E-BP1 expression suppressed proliferation, restored apoptosis and improved cellular metabolism. These findings provide insight into how cyst-lining cells respond to 4E-BP1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Polycystic Kidney Diseases/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , NADH, NADPH Oxidoreductases/metabolism , Phosphorylation , Polycystic Kidney Diseases/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Rats , TRPP Cation Channels/metabolism
4.
Soft Matter ; 17(26): 6315-6325, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-33982047

ABSTRACT

The addition of a common amino acid, phenylalanine, to a Layer-by-Layer (LbL) deposited polyelectrolyte (PE) film on a nanoporous membrane can increase its ionic selectivity over a PE film without the added amino acid. The addition of phenylalanine is inspired by detailed knowledge of the structure of the channelrhodopsins family of protein ion channels, where phenylalanine plays an instrumental role in facilitating sodium ion transport. The normally deposited and crosslinked PE films increase the cationic selectivity of a support membrane in a controllable manner where higher selectivity is achieved with thicker PE coatings, which in turn also increases the ionic resistance of the membrane. The increased ionic selectivity is desired while the increased resistance is not. We show that through incorporation of phenylalanine during the LbL deposition process, in solutions of NaCl with concentrations ranging from 0.1 to 100 mM, the ionic selectivity can be increased independently of the membrane resistance. Specifically, the addition is shown to increase the cationic transference of the PE films from 81.4% to 86.4%, an increase on par with PE films that are nearly triple the thickness while exhibiting much lower resistance compared to the thicker coatings, where the phenylalanine incorporated PE films display an area specific resistance of 1.81 Ω cm2 in 100 mM NaCl while much thicker PE membranes show a higher resistance of 2.75 Ω cm2 in the same 100 mM NaCl solution.


Subject(s)
Phenylalanine , Cations , Polyelectrolytes
5.
Methods ; 171: 20-27, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31546012

ABSTRACT

Although several decellularized extracellular matrix (ECM) sheets or patches have been commercialized for use in the clinic, only one injectable decellularized ECM hydrogel, a decellularized myocardial matrix, has reached clinical trials. Consequently, very little information is available for established manufacturing standards or assessments of these materials. Here we present detailed methodology for investigating three parameters related to manufacturing optimization for a porcine derived skeletal muscle ECM hydrogel - animal-to-animal variability, bioburden reduction, and harvesting conditions. Results from characterization assays, including residual dsDNA content and sulfated glycosaminoglycan content, did not yield noteworthy differences amongst individual animals or following the addition of a bioburden reducing agent. However, the tissue collected under different harvesting conditions contained varying amounts of fat, and the protein compositions of the decellularized products differed, which could ultimately impact subsequent efficacy in vitro or in vivo. As decellularized ECM hydrogels continue to be evaluated for various applications, the differences between laboratory-scale and manufacturing-scale material batches should be thoroughly considered to avoid costly and timely optimization during scale-up.


Subject(s)
Acellular Dermis , Extracellular Matrix/chemistry , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Animals , DNA/chemistry , DNA/drug effects , Extracellular Matrix/transplantation , Humans , Hydrogels/pharmacology , Hydrogels/standards , Muscle, Skeletal/chemistry , Muscle, Skeletal/transplantation , Myocardium/chemistry , Swine , Tissue Engineering/standards
6.
J Proteome Res ; 19(11): 4417-4427, 2020 11 06.
Article in English | MEDLINE | ID: mdl-32786691

ABSTRACT

Over 5 million people around the world have tested positive for the beta coronavirus SARS-CoV-2 as of May 29, 2020, a third of which are in the United States alone. These infections are associated with the development of a disease known as COVID-19, which is characterized by several symptoms, including persistent dry cough, shortness of breath, chills, muscle pain, headache, loss of taste or smell, and gastrointestinal distress. COVID-19 has been characterized by elevated mortality (over 100 thousand people have already died in the US alone), mostly due to thromboinflammatory complications that impair lung perfusion and systemic oxygenation in the most severe cases. While the levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) have been associated with the severity of the disease, little is known about the impact of IL-6 levels on the proteome of COVID-19 patients. The present study provides the first proteomics analysis of sera from COVID-19 patients, stratified by circulating levels of IL-6, and correlated to markers of inflammation and renal function. As a function of IL-6 levels, we identified significant dysregulation in serum levels of various coagulation factors, accompanied by increased levels of antifibrinolytic components, including several serine protease inhibitors (SERPINs). These were accompanied by up-regulation of the complement cascade and antimicrobial enzymes, especially in subjects with the highest levels of IL-6, which is consistent with an exacerbation of the acute phase response in these subjects. Although our results are observational, they highlight a clear increase in the levels of inhibitory components of the fibrinolytic cascade in severe COVID-19 disease, providing potential clues related to the etiology of coagulopathic complications in COVID-19 and paving the way for potential therapeutic interventions, such as the use of pro-fibrinolytic agents. Raw data for this study are available through ProteomeXchange with identifier PXD020601.


Subject(s)
Blood Proteins/analysis , Complement System Proteins/analysis , Coronavirus Infections , Interleukin-6/blood , Pandemics , Pneumonia, Viral , Proteome/analysis , Adult , Betacoronavirus , Blood Coagulation/physiology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/physiopathology , Female , Hemolysis , Humans , Male , Middle Aged , Pneumonia, Viral/blood , Pneumonia, Viral/physiopathology , Proteomics , SARS-CoV-2
7.
J Proteome Res ; 19(11): 4455-4469, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33103907

ABSTRACT

The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, or mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading and metabolic rewiring toward the hexose monophosphate shunt, RBCs from COVID-19 patients may be less capable of responding to environmental variations in hemoglobin oxygen saturation/oxidant stress when traveling from the lungs to peripheral capillaries and vice versa.


Subject(s)
Coronavirus Infections , Erythrocytes , Membrane Lipids , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Erythrocytes/chemistry , Erythrocytes/cytology , Erythrocytes/pathology , Humans , Lipidomics , Membrane Lipids/analysis , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Membrane Proteins/analysis , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Metabolome/physiology , Models, Molecular , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Proteome/analysis , Proteome/chemistry , Proteome/metabolism , SARS-CoV-2
8.
Anal Bioanal Chem ; 412(3): 739-752, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31832706

ABSTRACT

RMP1-14 is a monoclonal antibody that targets the murine PD-1 protein, and has been used extensively to probe the effects of PD-1 inhibition in preclinical murine models. However, to date, no quantitative analytical methods have been published for RMP1-14. To evaluate its anti-tumor activity in BALB/c mice inoculated with CT26.WT murine colon cancer cells, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify RMP1-14 in BALB/c mouse K3EDTA plasma was developed and validated. The methodology used a signature peptide (GFYPPDIYTEWK) as a surrogate for RMP1-14 quantitation and an isotopically labeled analog of the signature peptide as the internal standard. Initial method development focused on a hybrid LC-MS/MS assay involving Protein G immunoprecipitation, but this strategy was abandoned due to lack of selectivity. The final validated method consisted of dilution with Tris-buffered saline, trypsin digestion, and desalting using micro solid-phase extraction. Analytical run time was 3.50 min, and the method demonstrated linearity between 0.500 and 50.0 µg/mL of intact RMP1-14. Accuracy, precision, and robustness were all acceptable, and the method was demonstrated to be comparable to a commercially available fit-for-purpose enzyme-linked immunosorbent assay (ELISA) capable of measuring RMP1-14. The validated method was used to generate pharmacokinetic parameters from tumor-bearing BALB/c mice dosed with RMP1-14 at either 2.50 or 7.50 mg/kg. Overall, the validated method represents a novel tool that can be used to evaluate RMP1-14 activity in future immuno-oncology studies.


Subject(s)
Antibodies, Monoclonal/blood , Chromatography, Liquid/methods , Programmed Cell Death 1 Receptor/immunology , Tandem Mass Spectrometry/methods , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Calibration , Limit of Detection , Mice , Mice, Inbred BALB C
9.
J Proteome Res ; 18(4): 1657-1668, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30879303

ABSTRACT

Ovine forestomach matrix (OFM) is a decellularized extracellular matrix (dECM) biomaterial that serves as a scaffold for remodeling damaged soft tissue. dECM biomaterials are used in a variety of clinical applications, and their regenerative capacity is encoded not only in their biophysical properties but also in their molecular diversity. In this study, the proteome of OFM was characterized via both targeted and global mass spectrometry (MS) with the use of heavy isotope labeled (SIL) internal standards. Proteins were identified following either chemical digestion or extraction using saline or guanidine hydrochloride, followed by high resolution size exclusion chromatography. Identified proteins were annotated using the matrisome database and molecular function using the gene ontology database. The characterization identified 153 unique matrisome proteins, including 25 collagens, 58 glycoproteins, 12 proteoglycans, 13 ECM affiliated proteins, 20 ECM regulators, and 23 secreted factors. This inventory represents a comprehensive array of matrix proteins that are retained in OFM after processing. The diversity of proteins identified may contribute to OFM's remodeling capacity in clinical applications.


Subject(s)
Extracellular Matrix Proteins/analysis , Extracellular Matrix/chemistry , Proteome/analysis , Stomach/chemistry , Animals , Biocompatible Materials/analysis , Biocompatible Materials/chemistry , Collagen/analysis , Collagen/chemistry , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/classification , Mass Spectrometry , Protein Processing, Post-Translational , Proteoglycans/analysis , Proteoglycans/chemistry , Proteome/chemistry , Proteomics , Sheep
10.
Blood ; 128(12): e32-42, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27405778

ABSTRACT

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a key regulatory function in glucose oxidation by mediating fluxes through glycolysis or the pentose phosphate pathway (PPP) in an oxidative stress-dependent fashion. Previous studies documented metabolic reprogramming in stored red blood cells (RBCs) and oxidation of GAPDH at functional residues upon exposure to pro-oxidants diamide and H2O2 Here we hypothesize that routine storage of erythrocyte concentrates promotes metabolic modulation of stored RBCs by targeting functional thiol residues of GAPDH. Progressive increases in PPP/glycolysis ratios were determined via metabolic flux analysis after spiking (13)C1,2,3-glucose in erythrocyte concentrates stored in Additive Solution-3 under blood bank conditions for up to 42 days. Proteomics analyses revealed a storage-dependent oxidation of GAPDH at functional Cys152, 156, 247, and His179. Activity loss by oxidation occurred with increasing storage duration and was progressively irreversible. Irreversibly oxidized GAPDH accumulated in stored erythrocyte membranes and supernatants through storage day 42. By combining state-of-the-art ultra-high-pressure liquid chromatography-mass spectrometry metabolic flux analysis with redox and switch-tag proteomics, we identify for the first time ex vivo functionally relevant reversible and irreversible (sulfinic acid; Cys to dehydroalanine) oxidations of GAPDH without exogenous supplementation of excess pro-oxidant compounds in clinically relevant blood products. Oxidative and metabolic lesions, exacerbated by storage under hyperoxic conditions, were ameliorated by hypoxic storage. Storage-dependent reversible oxidation of GAPDH represents a mechanistic adaptation in stored erythrocytes to promote PPP activation and generate reducing equivalents. Removal of irreversibly oxidized, functionally compromised GAPDH identifies enhanced vesiculation as a self-protective mechanism in ex vivo aging erythrocytes.


Subject(s)
Erythrocytes/metabolism , Glucose/metabolism , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/chemistry , Glyceraldehyde 3-Phosphate Dehydrogenase (NADP+)/metabolism , Oxidative Stress , Blood Preservation , Glycolysis , Humans , Metabolomics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
11.
Transfusion ; 58(12): 2978-2991, 2018 12.
Article in English | MEDLINE | ID: mdl-30312994

ABSTRACT

BACKGROUND: Being devoid of de novo protein synthesis capacity, red blood cells (RBCs) have evolved to recycle oxidatively damaged proteins via mechanisms that involve methylation of dehydrated and deamidated aspartate and asparagine residues. Here we hypothesize that such mechanisms are relevant to routine storage in the blood bank. STUDY DESIGN AND METHODS: Within the framework of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, packed RBC units (n = 599) were stored under blood bank conditions for 10, 23, and 42 days and profiled for oxidative hemolysis and time-dependent metabolic dysregulation of the trans-sulfuration pathway. RESULTS: In these units, methionine consumption positively correlated with storage age and oxidative hemolysis. Mechanistic studies show that this phenomenon is favored by oxidative stress or hyperoxic storage (sulfur dioxide >95%), and prevented by hypoxia or methyltransferase inhibition. Through a combination of proteomics approaches and 13 C-methionine tracing, we observed oxidation-induced increases in both Asn deamidation to Asp and formation of methyl-Asp on key structural proteins and enzymes, including Band 3, hemoglobin, ankyrin, 4.1, spectrin beta, aldolase, glyceraldehyde 3-phosphate dehydrogenase, biphosphoglycerate mutase, lactate dehydrogenase and catalase. Methylated regions tended to map proximal to the active site (e.g., N316 of glyceraldehyde 3-phosphate dehydrogenase) and/or residues interacting with the N-terminal cytosolic domain of Band 3. CONCLUSION: While methylation of basic amino acid residues serves as an epigenetic modification in nucleated cells, protein methylation at carboxylate side chains and deamidated asparagines is a nonepigenetic posttranslational sensor of oxidative stress and refrigerated storage in anucleated human RBCs.


Subject(s)
Asparagine/metabolism , Aspartic Acid/metabolism , Blood Banks , Blood Preservation , Erythrocytes/metabolism , Oxidative Stress , Protein Processing, Post-Translational , Erythrocytes/cytology , Humans , Methylation , Proteomics , Time Factors
12.
J Proteome Res ; 16(11): 4177-4184, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28971683

ABSTRACT

The extracellular matrix (ECM) is readily enriched by decellularizing tissues with nondenaturing detergents to solubilize and deplete the vast majority of cellular components. This approach has been used extensively to generate ECM scaffolds for regenerative medicine technologies and in 3D cell culture to model how the ECM contributes to disease progression. A highly enriched ECM fraction can then be generated using a strong chaotrope buffer that is compatible with downstream bottom-up proteomic analysis or 3D cell culture experiments after extensive dialysis. With most tissues, an insoluble pellet remains after chaotrope extraction that is rich in structural ECM components. Previously, we showed that this understudied fraction represented approximately 80% of total fibrillar collagen from the lung and other ECM fiber components that are known to be covalently cross-linked. Here, we present a hydroxylamine digestion approach for chaotrope-insoluble ECM analysis with comparison to an established CNBr method for matrisome characterization. Because ECM characteristics vary widely among tissues, we chose five tissues that represent unique and diverse ECM abundances, composition, and biomechanical properties. Hydroxylamine digestion is compatible with downstream proteomic workflows, yields high levels of ECM peptides from the insoluble ECM fraction, and reduces analytical variability when compared to CNBr digestion. Data are available via ProteomeXchange with identifier PXD006428.


Subject(s)
Extracellular Matrix/chemistry , Hydroxylamine/chemistry , Animals , Extracellular Matrix Proteins/isolation & purification , Humans , Methods , Solubility
13.
Mol Cell Proteomics ; 14(4): 961-73, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25660013

ABSTRACT

The use of extracellular matrix (ECM) scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs.


Subject(s)
Extracellular Matrix Proteins/metabolism , Lung/metabolism , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Amino Acid Sequence , Animals , Chemical Fractionation , Lung/cytology , Molecular Sequence Data , Organ Size , Peptides/chemistry , Peptides/metabolism , Rats, Inbred F344
14.
Mol Cell Proteomics ; 14(7): 1946-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25948757

ABSTRACT

Bone samples from several vertebrates were collected from the Ziegler Reservoir fossil site, in Snowmass Village, Colorado, and processed for proteomics analysis. The specimens come from Pleistocene megafauna Bison latifrons, dating back ∼ 120,000 years. Proteomics analysis using a simplified sample preparation procedure and tandem mass spectrometry (MS/MS) was applied to obtain protein identifications. Several bioinformatics resources were used to obtain peptide identifications based on sequence homology to extant species with annotated genomes. With the exception of soil sample controls, all samples resulted in confident peptide identifications that mapped to type I collagen. In addition, we analyzed a specimen from the extinct B. latifrons that yielded peptide identifications mapping to over 33 bovine proteins. Our analysis resulted in extensive fibrillar collagen sequence coverage, including the identification of posttranslational modifications. Hydroxylysine glucosylgalactosylation, a modification thought to be involved in collagen fiber formation and bone mineralization, was identified for the first time in an ancient protein dataset. Meta-analysis of data from other studies indicates that this modification may be common in well-preserved prehistoric samples. Additional peptide sequences from extracellular matrix (ECM) and non-ECM proteins have also been identified for the first time in ancient tissue samples. These data provide a framework for analyzing ancient protein signatures in well-preserved fossil specimens, while also contributing novel insights into the molecular basis of organic matter preservation. As such, this analysis has unearthed common posttranslational modifications of collagen that may assist in its preservation over time. The data are available via ProteomeXchange with identifier PXD001827.


Subject(s)
Collagen/metabolism , Extinction, Biological , Hydroxylysine/metabolism , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Asparagine/metabolism , Bison , Collagen/chemistry , Glutamine/metabolism , Glycosylation , Molecular Sequence Data , Skull/anatomy & histology , Time Factors
15.
Nucleic Acids Res ; 43(6): 3286-97, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25670679

ABSTRACT

Brr2 is a DExD/H-box RNA helicase that is responsible for U4/U6 unwinding, a critical step in spliceosomal activation. Brr2 is a large protein (∼250 kD) that consists of an N-terminal domain (∼500 residues) with unknown function and two Hel308-like modules that are responsible for RNA unwinding. Here we demonstrate that removal of the entire N-terminal domain is lethal to Saccharomyces cerevisiae and deletion of the N-terminal 120 residues leads to splicing defects and severely impaired growth. This N-terminal truncation does not significantly affect Brr2's helicase activity. Brr2-Δ120 can be successfully assembled into the tri-snRNP (albeit at a lower level than the WT Brr2) and the spliceosomal B complex. However, the truncation significantly impairs spliceosomal activation, leading to a dramatic reduction of U5, U6 snRNAs and accumulation of U1 snRNA in the B(act) complex. The N-terminal domain of Brr2 does not seem to be directly involved in regulating U1/5'ss unwinding. Instead, the N-terminal domain seems to be critical for retaining U5 and U6 snRNPs during/after spliceosomal activation through its interaction with snRNAs and possibly other spliceosomal proteins, revealing a new role of Brr2 in spliceosomal activation in addition to U4/U6 unwinding.


Subject(s)
RNA Helicases/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Spliceosomes/metabolism , Genes, Fungal , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Structure, Tertiary , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
16.
Regul Toxicol Pharmacol ; 89: 70-73, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28720347

ABSTRACT

The regulatory body that oversees the safety assessment of genetically modified (GM) crops in the European Union, the European Food Safety Authority (EFSA), uniquely requires that endogenous allergen levels be quantified as part of the compositional characterization of GM versions of crops, such as soybean, that are considered to be major allergenic foods. The value of this requirement for assessing food safety has been challenged for multiple reasons including negligible risk of altering allergen levels compared with traditional non-GM breeding. Scatter plots comparing the mean endogenous allergen levels in non-GM soybean isoline grain with the respective levels in GM grain or concurrently grown non-GM commercial reference varieties clearly show that transgenesis causes less change compared with traditional breeding. This visual assessment is confirmed by the quantitative fit of the line of identity (y = x) to the datasets. The current science on allergy does not support the requirement for quantifying allergen levels in GM crops to support safety assessment.


Subject(s)
Allergens/analysis , Food Safety , Glycine max/chemistry , Plants, Genetically Modified/chemistry , Breeding/methods , European Union , Gene Transfer Techniques , Humans , Plants, Genetically Modified/adverse effects , Glycine max/genetics
17.
Transfusion ; 56(6): 1329-39, 2016 06.
Article in English | MEDLINE | ID: mdl-26813021

ABSTRACT

BACKGROUND: Laboratory technologies have highlighted the progressive accumulation of the so-called "storage lesion," a wide series of alterations to stored red blood cells (RBCs) that may affect the safety and effectiveness of the transfusion therapy. New improvements in the field are awaited to ameliorate this lesion, such as the introduction of washing technologies in the cell processing pipeline. Laboratory studies that have tested such technologies so far rely on observational qualitative or semiquantitative techniques. STUDY DESIGN AND METHODS: A state-of-the-art quantitative proteomics approach utilizing quantitative concatamers (QconCAT) was used to simultaneously monitor fluctuations in the abundance of 114 proteins in AS-3 RBC supernatants (n = 5; 11 time points, including before and after leukoreduction, at 3 hours, on Days 1 and 2, and weekly sampling from Day 7 through Day 42). RESULTS: Leukoreduction-dependent depletion of plasma proteins was observed at the earliest time points. A subset of proteins showed very high linear correlation (r(2) > 0.9) not only with storage time, but also with absolute levels of hemoglobin α1 and ß, a proxy for RBC hemolysis and vesiculation. Linear regression was performed to describe the temporal relationship between these proteins. Our findings suggest a role for supernatant glyceraldehyde-3-phosphate dehydrogenase; peroxiredoxin-1, -2, and -6; carbonic anhydrase-1 and -2; selenium binding protein-1; biliverdin reductase; aminolevulinate dehydratase; and catalase as potential biomarkers of RBC quality during storage. CONCLUSION: A targeted proteomics technology revealed novel biomarkers of the RBC storage lesion and promises to become a key analytical readout for the development and testing of alternative cell processing strategies.


Subject(s)
Blood Preservation/adverse effects , Blood Proteins/metabolism , Erythrocytes/pathology , Hemolysis , Proteomics/methods , Biomarkers/analysis , Blood Proteins/analysis , Humans , Leukocyte Reduction Procedures , Time Factors
18.
Acta Biomater ; 152: 47-59, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36041648

ABSTRACT

As the native regenerative potential of adult cardiac tissue is limited post-injury, stimulating endogenous repair mechanisms in the mammalian myocardium is a potential goal of regenerative medicine therapeutics. Injection of myocardial matrix hydrogels into the heart post-myocardial infarction (MI) has demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential promotion of cardiomyocyte turnover. In this study, the myocardial matrix hydrogel was shown to have native capability as an effective reactive oxygen species scavenger and protect against oxidative stress induced cell cycle inhibition in vitro. Encapsulation of cardiomyocytes demonstrated an enhanced turnover in in vitro studies, and in vivo assessments of myocardial matrix hydrogel treatment post-MI showed increased thymidine analog uptake in cardiomyocyte nuclei compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment mitigating oxidative damage and supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation. STATEMENT OF SIGNIFICANCE: Loss of adult mammalian cardiomyocyte turnover is influenced by shifts in oxidative damage, which represents a potential mechanism for improving restoration of cardiac muscle after myocardial infarction (MI). Injection of a myocardial matrix hydrogel into the heart post-MI previously demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential in promoting proliferation of cardiomyocytes. In this study, the myocardial matrix hydrogel was shown to protect cells from oxidative stress and increase proliferation in vitro. In a rat MI model, greater presence of tissue free thiol content spared from oxidative damage, lesser mitochondrial superoxide content, and increased thymidine analog uptake in cardiomyocytes was found in matrix injected animals compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Animals , DNA/metabolism , Hydrogels/metabolism , Hydrogels/pharmacology , Mammals , Myocardial Infarction/metabolism , Myocardium/metabolism , Rats , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/pharmacology , Superoxides , Thymidine/metabolism , Thymidine/pharmacology
19.
Oncotarget ; 13: 426-438, 2022.
Article in English | MEDLINE | ID: mdl-35198102

ABSTRACT

Suppressive effects of extracellular matrix (ECM) upon various cancers have been reported. Glioblastoma multiforme has poor prognosis and new therapies are desired. This work investigated the effects of a saline-soluble fraction of urinary bladder ECM (ECM-SF) upon glioma cells. Viability at 24 hours in 1, 5, or 10 mg/mL ECM-SF-spiked media was evaluated in primary glioma cells (0319, 1015, 1119), glioma cell lines (A172, T98G, U87MG, C6), and brain cell lines (HCN-2, HMC3). Viability universally decreased at 5 and 10 mg/mL with U87MG, HCN-2, and HCM3 being least sensitive. Apoptosis in 0319 and 1119 cells was confirmed via NucView 488. Bi-weekly intravenous injection of ECM-SF (120 mg/kg) for 10 weeks in Sprague-Dawley rats did not affect weight, temperature, complete blood count, or multi-organ histology (N = 5). Intratumoral injection of ECM-SF (10 uL of 30 mg/mL) at weeks 2-4 post C6 inoculation in Wistar rats increased median survival from 24.5 to 51 days (hazard ratio for death 0.22) and decreased average tumor volume at time of death from 349 mm3 to 90 mm3 over 10 weeks (N = 6). Mass spectrometry identified 2,562 protein species in ECM-SF, parent ECM, and originating tissue. These results demonstrate the suppressive effects of ECM on glioma and warrant further study.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival , Extracellular Matrix/metabolism , Glioblastoma/pathology , Glioma/pathology , Rats , Rats, Sprague-Dawley , Rats, Wistar
20.
Biochemistry ; 50(46): 9998-10012, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-21928778

ABSTRACT

Synaptotagmin 1 (Syt1) is a Ca(2+) sensor for SNARE-mediated, Ca(2+)-triggered synaptic vesicle fusion in neurons. It is composed of luminal, transmembrane, linker, and two Ca(2+)-binding (C2) domains. Here we describe expression and purification of full-length mammalian Syt1 in insect cells along with an extensive biochemical characterization of the purified protein. The expressed and purified protein is properly folded and has increased α-helical content compared to the C2AB fragment alone. Post-translational modifications of Syt1 were analyzed by mass spectrometry, revealing the same modifications of Syt1 that were previously described for Syt1 purified from brain extract or mammalian cell lines, along with a novel modification of Syt1, tyrosine nitration. A lipid binding screen with both full-length Syt1 and the C2AB fragments of Syt1 and Syt3 isoforms revealed new Syt1-lipid interactions. These results suggest a conserved lipid binding mechanism in which Ca(2+)-independent interactions are mediated via a lysine rich region of the C2B domain while Ca(2+)-dependent interactions are mediated via the Ca(2+)-binding loops.


Subject(s)
Lipid Metabolism , Protein Processing, Post-Translational , Synaptotagmin I/genetics , Synaptotagmin I/metabolism , Amino Acid Sequence , Animals , Cell Line , Cloning, Molecular , Gene Expression , Glycosylation , Insecta/cytology , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Folding , Protein Structure, Secondary , Rats , Sequence Alignment , Synaptotagmin I/chemistry , Synaptotagmin I/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL