Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730852

ABSTRACT

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Subject(s)
Cells/metabolism , Energy Metabolism , Adaptation, Physiological/radiation effects , Adenosine Triphosphate/metabolism , Benzoquinones/metabolism , Cell Membrane/metabolism , Cell Membrane/radiation effects , Cells/radiation effects , Chromatophores/metabolism , Cytochromes c2/metabolism , Diffusion , Electron Transport/radiation effects , Energy Metabolism/radiation effects , Environment , Hydrogen Bonding , Kinetics , Light , Molecular Dynamics Simulation , Phenotype , Proteins/metabolism , Rhodobacter sphaeroides/physiology , Rhodobacter sphaeroides/radiation effects , Static Electricity , Stress, Physiological/radiation effects , Temperature
2.
Proc Natl Acad Sci U S A ; 120(12): e2217922120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913593

ABSTRACT

Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.


Subject(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/chemistry , Cytochromes c , Cytochromes b , Styrene , Cryoelectron Microscopy , Quinones , Lipids , Electron Transport Complex III , Oxidation-Reduction
3.
Nature ; 575(7783): 535-539, 2019 11.
Article in English | MEDLINE | ID: mdl-31723268

ABSTRACT

The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis.


Subject(s)
Cryoelectron Microscopy , Cytochrome b6f Complex/chemistry , Cytochrome b6f Complex/ultrastructure , Spinacia oleracea/chemistry , Spinacia oleracea/ultrastructure , Binding Sites , Chlorophyll/chemistry , Heme/chemistry , Lipids/chemistry , Models, Molecular , Oxidation-Reduction , Photosynthesis , Plastoquinone/chemistry , Structure-Activity Relationship
4.
Biochem J ; 481(13): 823-838, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38780411

ABSTRACT

The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.


Subject(s)
Bacterial Proteins , Light-Harvesting Protein Complexes , Protein Multimerization , Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolism , Rhodobacter sphaeroides/genetics , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Glycolipids/metabolism , Glycolipids/chemistry , Models, Molecular , Crystallography, X-Ray
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35082153

ABSTRACT

The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture.


Subject(s)
Bacterial Proteins/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphorus/metabolism , Bacteroidetes/metabolism , Biodiversity , Flavobacterium/metabolism
6.
J Am Chem Soc ; 146(29): 20019-20032, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38991108

ABSTRACT

Small, diffusible redox proteins play an essential role in electron transfer (ET) in respiration and photosynthesis, sustaining life on Earth by shuttling electrons between membrane-bound complexes via finely tuned and reversible interactions. Ensemble kinetic studies show transient ET complexes form in two distinct stages: an "encounter" complex largely mediated by electrostatic interactions, which subsequently, through subtle reorganization of the binding interface, forms a "productive" ET complex stabilized by additional hydrophobic interactions around the redox-active cofactors. Here, using single-molecule force spectroscopy (SMFS) we dissected the transient ET complexes formed between the photosynthetic reaction center-light harvesting complex 1 (RC-LH1) of Rhodobacter sphaeroides and its native electron donor cytochrome c2 (cyt c2). Importantly, SMFS resolves the distribution of interaction forces into low (∼150 pN) and high (∼330 pN) components, with the former more susceptible to salt concentration and to alteration of key charged residues on the RC. Thus, the low force component is suggested to reflect the contribution of electrostatic interactions in forming the initial encounter complex, whereas the high force component reflects the additional stabilization provided by hydrophobic interactions to the productive ET complex. Employing molecular dynamics simulations, we resolve five intermediate states that comprise the encounter, productive ET and leaving complexes, predicting a weak interaction between cyt c2 and the LH1 ring near the RC-L subunit that could lie along the exit path for oxidized cyt c2. The multimodal nature of the interactions of ET complexes captured here may have wider implications for ET in all domains of life.


Subject(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/metabolism , Electron Transport , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Cytochromes c2/chemistry , Cytochromes c2/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism
7.
Biochem J ; 480(6): 455-460, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36988315

ABSTRACT

The reaction centre (RC) in purple phototrophic bacteria is encircled by the primary light-harvesting complex 1 (LH1) antenna, forming the RC-LH1 'core' complex. The Qy absorption maximum of LH1 complexes ranges from ∼875-960 nm in bacteriochlorophyll (BChl) a-utilising organisms, to 1018 nm in the BChl b-containing complex from Blastochloris (Blc.) viridis. The red-shifted absorption of the Blc. viridis LH1 was predicted to be due in part to the presence of the γ subunit unique to Blastochloris spp., which binds to the exterior of the complex and is proposed to increase packing and excitonic coupling of the BChl pigments. The study by Namoon et al. provides experimental evidence for the red-shifting role of the γ subunit and an evolutionary rationale for its incorporation into LH1. The authors show that cells producing RC-LH1 lacking the γ subunit absorb maximally at 972 nm, 46 nm to the blue of the wild-type organism. Wavelengths in the 900-1000 nm region of the solar spectrum transmit poorly through water, thus γ shifts absorption of LH1 to a region where photons have lower energy but are more abundant. Complementation of the mutant with a divergent copy of LH1γ resulted in an intermediate red shift, revealing the possibility of tuning LH1 absorption using engineered variants of this subunit. These findings provide new insights into photosynthesis in the lowest energy phototrophs and how the absorption properties of light-harvesting complexes are modified by the recruitment of additional subunits.


Subject(s)
Hyphomicrobiaceae , Light-Harvesting Protein Complexes , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Hyphomicrobiaceae/metabolism , Proteobacteria , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649240

ABSTRACT

Chlorophylls (Chls) are essential cofactors for photosynthesis. One of the least understood steps of Chl biosynthesis is formation of the fifth (E) ring, where the red substrate, magnesium protoporphyrin IX monomethyl ester, is converted to the green product, 3,8-divinyl protochlorophyllide a In oxygenic phototrophs, this reaction is catalyzed by an oxygen-dependent cyclase, consisting of a catalytic subunit (AcsF/CycI) and an auxiliary protein, Ycf54. Deletion of Ycf54 impairs cyclase activity and results in severe Chl deficiency, but its exact role is not clear. Here, we used a Δycf54 mutant of the model cyanobacterium Synechocystis sp. PCC 6803 to generate suppressor mutations that restore normal levels of Chl. Sequencing Δycf54 revertants identified a single D219G amino acid substitution in CycI and frameshifts in slr1916, which encodes a putative esterase. Introduction of these mutations to the original Δycf54 mutant validated the suppressor effect, especially in combination. However, comprehensive analysis of the Δycf54 suppressor strains revealed that the D219G-substituted CycI is only partially active and its accumulation is misregulated, suggesting that Ycf54 controls both the level and activity of CycI. We also show that Slr1916 has Chl dephytylase activity in vitro and its inactivation up-regulates the entire Chl biosynthetic pathway, resulting in improved cyclase activity. Finally, large-scale bioinformatic analysis indicates that our laboratory evolution of Ycf54-independent CycI mimics natural evolution of AcsF in low-light-adapted ecotypes of the oceanic cyanobacteria Prochlorococcus, which lack Ycf54, providing insight into the evolutionary history of the cyclase enzyme.


Subject(s)
Bacterial Proteins/metabolism , Bacteriochlorophylls/biosynthesis , Gene Deletion , Oxygenases/metabolism , Prochlorococcus/metabolism , Synechocystis/metabolism , Bacterial Proteins/genetics , Bacteriochlorophylls/genetics , Oxygenases/genetics , Prochlorococcus/genetics , Synechocystis/genetics
9.
Plant J ; 109(1): 23-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34709696

ABSTRACT

In this Perspective article, we describe the visions of the PhotoRedesign consortium funded by the European Research Council of how to enhance photosynthesis. The light reactions of photosynthesis in individual phototrophic species use only a fraction of the solar spectrum, and high light intensities can impair and even damage the process. In consequence, expanding the solar spectrum and enhancing the overall energy capacity of the process, while developing resilience to stresses imposed by high light intensities, could have a strong positive impact on food and energy production. So far, the complexity of the photosynthetic machinery has largely prevented improvements by conventional approaches. Therefore, there is an urgent need to develop concepts to redesign the light-harvesting and photochemical capacity of photosynthesis, as well as to establish new model systems and toolkits for the next generation of photosynthesis researchers. The overall objective of PhotoRedesign is to reconfigure the photosynthetic light reactions so they can harvest and safely convert energy from an expanded solar spectrum. To this end, a variety of synthetic biology approaches, including de novo design, will combine the attributes of photosystems from different photoautotrophic model organisms, namely the purple bacterium Rhodobacter sphaeroides, the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana. In parallel, adaptive laboratory evolution will be applied to improve the capacity of reimagined organisms to cope with enhanced input of solar energy, particularly in high and fluctuating light.


Subject(s)
Arabidopsis/genetics , Directed Molecular Evolution , Photosynthesis/genetics , Rhodobacter sphaeroides/genetics , Synechocystis/genetics , Synthetic Biology , Arabidopsis/physiology , Arabidopsis/radiation effects , Light , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/genetics , Rhodobacter sphaeroides/physiology , Rhodobacter sphaeroides/radiation effects , Synechocystis/physiology , Synechocystis/radiation effects
10.
J Am Chem Soc ; 145(21): 11659-11668, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37200045

ABSTRACT

The phycobilisome is the primary light-harvesting antenna in cyanobacterial and red algal oxygenic photosynthesis. It maintains near-unity efficiency of energy transfer to reaction centers despite relying on slow exciton hopping along a relatively sparse network of highly fluorescent phycobilin chromophores. How the complex maintains this high efficiency remains unexplained. Using a two-dimensional electronic spectroscopy polarization scheme that enhances energy transfer features, we directly watch energy flow in the phycobilisome complex of Synechocystis sp. PCC 6803 from the outer phycocyanin rods to the allophycocyanin core. The observed downhill flow of energy, previously hidden within congested spectra, is faster than timescales predicted by Förster hopping along single rod chromophores. We attribute the fast, 8 ps energy transfer to interactions between rod-core linker proteins and terminal rod chromophores, which facilitate unidirectionally downhill energy flow to the core. This mechanism drives the high energy transfer efficiency in the phycobilisome and suggests that linker protein-chromophore interactions have likely evolved to shape its energetic landscape.


Subject(s)
Phycobilisomes , Synechocystis , Phycobilisomes/chemistry , Phycobilisomes/metabolism , Photosynthesis , Energy Transfer , Synechocystis/chemistry
11.
Photosynth Res ; 155(3): 219-245, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36542271

ABSTRACT

Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.


Subject(s)
Synechocystis , Synechocystis/metabolism , Photosystem II Protein Complex/metabolism , Cytochrome b6f Complex/metabolism , Photosynthesis , Chlorophyll/metabolism , Photosystem I Protein Complex/metabolism , Electron Transport
12.
Biochem J ; 479(13): 1487-1503, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35726684

ABSTRACT

In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ∼10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.


Subject(s)
Cytochrome b6f Complex , Synechocystis , Cryoelectron Microscopy , Cytochrome b6f Complex/chemistry , Cytochrome b6f Complex/metabolism , Cytochrome b6f Complex/physiology , Electron Transport/physiology , Photosynthesis , Synechocystis/metabolism , Synechocystis/physiology , Thylakoids/genetics , Thylakoids/metabolism
13.
Nucleic Acids Res ; 49(21): e123, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34554258

ABSTRACT

Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.


Subject(s)
Lycopene/metabolism , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Promoter Regions, Genetic , Synechocystis , Gene Library , Synechocystis/genetics , Synechocystis/metabolism
14.
Proc Natl Acad Sci U S A ; 117(12): 6502-6508, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32139606

ABSTRACT

Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment-protein complexes. The carbon-carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S1 state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S1 → Qx route because the S1 → S0 fluorescence emission of ζ-carotene overlaps almost perfectly with the Qx absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a These findings provide insights into the coevolution of photosynthetic pigments and pigment-protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.


Subject(s)
Bacterial Proteins/metabolism , Bacteriochlorophylls/metabolism , Carotenoids/metabolism , Light-Harvesting Protein Complexes/metabolism , Bacterial Proteins/chemistry , Carotenoids/chemistry , Energy Transfer , Kinetics , Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Rhodobacter sphaeroides/chemistry , Rhodobacter sphaeroides/metabolism
15.
J Appl Microbiol ; 133(2): 830-841, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35384175

ABSTRACT

AIMS: To investigate the priming effects of sub-inhibitory concentrations of biocides on antibiotic resistance in bacteria. METHODS AND RESULTS: Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were exposed to sub-inhibitory concentrations of biocides via a gradient plate method. Minimum inhibitory concentration (MIC) and antibiotic susceptibility were determined, and efflux pump inhibitors (thioridazine and chlorpromazine) were used to investigate antibiotic resistance mechanism(s). Escherichia coli displayed a twofold increase in MIC (32-64 mg l-1 ) to H2 O2 which was stable after 15 passages, but lost after 6 weeks, and P. aeruginosa displayed a twofold increase in MIC (64-128 mg l-1 ) to BZK which was also stable for 15 passages. There were no other tolerances observed to biocides in E. coli, P. aeruginosa or S. aureus; however, stable cross-resistance to antibiotics was observed in the absence of a stable increased tolerance to biocides. Sixfold increases in MIC to cephalothin and fourfold to ceftriaxone and ampicillin were observed in hydrogen peroxide primed E. coli. Chlorhexidine primed S. aureus showed a fourfold increase in MIC to oxacillin, and glutaraldehyde-primed P. aeruginosa showed fourfold (sulphatriad) and eightfold (ciprofloxacin) increases in MIC. Thioridazine increased the susceptibility of E. coli to cephalothin and cefoxitin by fourfold and twofold, respectively, and both thioridazine and chlorpromazine increased the susceptibility S. aureus to oxacillin by eightfold and fourfold, respectively. CONCLUSIONS: These findings demonstrate that sub-inhibitory concentrations of biocides can prime bacteria to become resistant to antibiotics even in the absence of stable biocide tolerance and suggests activation of efflux mechanisms may be a contributory factor. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the effects of low-level exposure of biocides (priming) on antibiotic resistance even in the absence of obvious increased biocidal tolerance.


Subject(s)
Disinfectants , Anti-Bacterial Agents/pharmacology , Cephalothin/pharmacology , Chlorpromazine/pharmacology , Disinfectants/pharmacology , Drug Resistance, Bacterial , Escherichia coli , Microbial Sensitivity Tests , Oxacillin/pharmacology , Pseudomonas aeruginosa , Staphylococcus aureus , Thioridazine/pharmacology
16.
Biochem J ; 478(20): 3775-3790, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34590677

ABSTRACT

Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Šresolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αß heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion.


Subject(s)
Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Peptides/chemistry , Photosynthesis/physiology , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriochlorophylls/chemistry , Bacteriochlorophylls/metabolism , Binding Sites , Carotenoids/chemistry , Carotenoids/metabolism , Cryoelectron Microscopy , Gene Expression , Hydroquinones/chemistry , Hydroquinones/metabolism , Light , Light-Harvesting Protein Complexes/genetics , Light-Harvesting Protein Complexes/metabolism , Models, Molecular , Peptides/genetics , Peptides/metabolism , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Rhodobacter sphaeroides/radiation effects
17.
Biochem J ; 478(21): 3923-3937, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34622934

ABSTRACT

The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Šresolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 ß polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αß subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.


Subject(s)
Bacterial Proteins , Light-Harvesting Protein Complexes , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Dimerization , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Molecular Structure
18.
Biochem J ; 477(20): 4021-4036, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32990304

ABSTRACT

Chlorophyll synthase (ChlG) catalyses a terminal reaction in the chlorophyll biosynthesis pathway, attachment of phytol or geranylgeraniol to the C17 propionate of chlorophyllide. Cyanobacterial ChlG forms a stable complex with high light-inducible protein D (HliD), a small single-helix protein homologous to the third transmembrane helix of plant light-harvesting complexes (LHCs). The ChlG-HliD assembly binds chlorophyll, ß-carotene, zeaxanthin and myxoxanthophyll and associates with the YidC insertase, most likely to facilitate incorporation of chlorophyll into translated photosystem apoproteins. HliD independently coordinates chlorophyll and ß-carotene but the role of the xanthophylls, which appear to be exclusive to the core ChlG-HliD assembly, is unclear. Here we generated mutants of Synechocystis sp. PCC 6803 lacking specific combinations of carotenoids or HliD in a background with FLAG- or His-tagged ChlG. Immunoprecipitation experiments and analysis of isolated membranes demonstrate that the absence of zeaxanthin and myxoxanthophyll significantly weakens the interaction between HliD and ChlG. ChlG alone does not bind carotenoids and accumulation of the chlorophyllide substrate in the absence of xanthophylls indicates that activity/stability of the 'naked' enzyme is perturbed. In contrast, the interaction of HliD with a second partner, the photosystem II assembly factor Ycf39, is preserved in the absence of xanthophylls. We propose that xanthophylls are required for the stable association of ChlG and HliD, acting as a 'molecular glue' at the lateral transmembrane interface between these proteins; roles for zeaxanthin and myxoxanthophyll in ChlG-HliD complexation are discussed, as well as the possible presence of similar complexes between LHC-like proteins and chlorophyll biosynthesis enzymes in plants.


Subject(s)
Carbon-Oxygen Ligases/metabolism , Chlorophyll/metabolism , Cyanobacteria/metabolism , Light-Harvesting Protein Complexes/metabolism , Xanthophylls/metabolism , Chlorophyll/chemistry , Chromatography, High Pressure Liquid , Cyanobacteria/enzymology , Light , Mutation , Photosystem II Protein Complex/metabolism , Protein Binding , Proteomics , Recombinant Proteins , Synechocystis/genetics , Synechocystis/metabolism , Xanthophylls/chemistry , Zeaxanthins/genetics , Zeaxanthins/metabolism
19.
J Am Chem Soc ; 142(32): 13898-13907, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32672948

ABSTRACT

Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Temperature , Molecular Structure , Protein Stability , Semiconductors , Spectrum Analysis , Xanthophylls/chemistry
20.
Plant Cell ; 29(5): 1119-1136, 2017 05.
Article in English | MEDLINE | ID: mdl-28364021

ABSTRACT

Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from Thermosynechococcus elongatus, Synechococcus sp PCC 7002, and Synechocystis sp PCC 6803. Hyperspectral confocal fluorescence microscopy and three-dimensional structured illumination microscopy of Synechocystis sp PCC 6803 cells visualize PSI domains within the context of the complete thylakoid system. Crystallographic and AFM data were used to build a structural model of a membrane landscape comprising 96 PSI trimers and 27,648 chlorophyll a molecules. Rather than facilitating intertrimer energy transfer, the close associations between PSI primarily maximize packing efficiency; short-range interactions with Complex I and cytochrome b6f are excluded from these regions of the membrane, so PSI turnover is sustained by long-distance diffusion of the electron donors at the membrane surface. Elsewhere, PSI-photosystem II contact zones provide sites for docking phycobilisomes and the formation of megacomplexes. PSI-enriched domains in cyanobacteria might foreshadow the partitioning of PSI into stromal lamellae in plants, similarly sustained by long-distance diffusion of electron carriers.


Subject(s)
Cyanobacteria/metabolism , Photosystem I Protein Complex/metabolism , Synechococcus/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL