Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Hepatology ; 74(4): 1766-1781, 2021 10.
Article in English | MEDLINE | ID: mdl-33991110

ABSTRACT

BACKGROUND AND AIMS: Therapeutic strategies against HBV focus, among others, on the activation of the immune system to enable the infected host to eliminate HBV. Hypoxia-inducible factor 1 alpha (HIF1α) stabilization has been associated with impaired immune responses. HBV pathogenesis triggers chronic hepatitis-related scaring, leading inter alia to modulation of liver oxygenation and transient immune activation, both factors playing a role in HIF1α stabilization. APPROACH AND RESULTS: We addressed whether HIF1α interferes with immune-mediated induction of the cytidine deaminase, apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B; A3B), and subsequent covalently closed circular DNA (cccDNA) decay. Liver biopsies of chronic HBV (CHB) patients were analyzed by immunohistochemistry and in situ hybridization. The effect of HIF1α induction/stabilization on differentiated HepaRG or mice ± HBV ± LTßR-agonist (BS1) was assessed in vitro and in vivo. Induction of A3B and subsequent effects were analyzed by RT-qPCR, immunoblotting, chromatin immunoprecipitation, immunocytochemistry, and mass spectrometry. Analyzing CHB highlighted that areas with high HIF1α levels and low A3B expression correlated with high HBcAg, potentially representing a reservoir for HBV survival in immune-active patients. In vitro, HIF1α stabilization strongly impaired A3B expression and anti-HBV effect. Interestingly, HIF1α knockdown was sufficient to rescue the inhibition of A3B up-regulation and -mediated antiviral effects, whereas HIF2α knockdown had no effect. HIF1α stabilization decreased the level of v-rel reticuloendotheliosis viral oncogene homolog B protein, but not its mRNA, which was confirmed in vivo. Noteworthy, this function of HIF1α was independent of its partner, aryl hydrocarbon receptor nuclear translocator. CONCLUSIONS: In conclusion, inhibiting HIF1α expression or stabilization represents an anti-HBV strategy in the context of immune-mediated A3B induction. High HIF1α, mediated by hypoxia or inflammation, offers a reservoir for HBV survival in vivo and should be considered as a restricting factor in the development of immune therapies.


Subject(s)
Cytidine Deaminase/genetics , Hepatitis B, Chronic/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver/metabolism , Minor Histocompatibility Antigens/genetics , Transcription Factor RelB/genetics , Amino Acids, Dicarboxylic/pharmacology , Animals , Cell Line , Cytidine Deaminase/metabolism , DNA, Circular/metabolism , Down-Regulation , Gene Knockdown Techniques , Hepatitis B virus , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Humans , Hypoxia/genetics , Hypoxia/metabolism , Lymphotoxin beta Receptor/agonists , Mice , Microbial Viability , Minor Histocompatibility Antigens/metabolism , RNA, Messenger/metabolism , Transcription Factor RelB/drug effects , Transcription Factor RelB/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL