Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
ACS Infect Dis ; 7(8): 2310-2323, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34329558

ABSTRACT

Reliable antimicrobial susceptibility testing is essential in informing both clinical antibiotic therapy decisions and the development of new antibiotics. Mammalian cell culture media have been proposed as an alternative to bacteriological media, potentially representing some critical aspects of the infection environment more accurately. Here, we use a combination of NMR metabolomics and electron microscopy to investigate the response of Escherichia coli and Pseudomonas aeruginosa to growth in differing rich media to determine whether and how this determines metabolic strategies, the composition of the cell wall, and consequently susceptibility to membrane active antimicrobials including colistin and tobramycin. The NMR metabolomic approach is first validated by characterizing the expected E. coli acid stress response to fermentation and the accompanying changes in the cell wall composition, when cultured in glucose rich mammalian cell culture media. Glucose is not a major carbon source for P. aeruginosa but is associated with a response to osmotic stress and a modest increase in colistin tolerance. Growth of P. aeruginosa in a range of bacteriological media is supported by consumption of formate, an important electron donor in anaerobic respiration. In mammalian cell culture media, however, the overall metabolic strategy of P. aeruginosa is instead dependent on consumption of glutamine and lactate. Formate doping of mammalian cell culture media does not alter the overall metabolic strategy but is associated with polyamine catabolism, remodelling of both inner and outer membranes, and a modest sensitization of P. aeruginosa PAO1 to colistin. Further, in a panel of P. aeruginosa isolates an increase between 2- and 3-fold in sensitivity to tobramycin is achieved through doping with other organic acids, notably propionate which also similarly enhances the activity of colistin. Organic acids are therefore capable of nonspecifically influencing the potency of membrane active antimicrobials.


Subject(s)
Anti-Infective Agents , Pseudomonas aeruginosa , Cell Wall , Escherichia coli , Microbial Sensitivity Tests
2.
Commun Biol ; 3(1): 697, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247193

ABSTRACT

Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Fish Proteins/pharmacology , Lung Diseases/drug therapy , Pore Forming Cytotoxic Proteins/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Disease Models, Animal , Fish Proteins/chemistry , Fish Proteins/therapeutic use , HEK293 Cells , HeLa Cells , Humans , Hydrogen Bonding , Lung Diseases/microbiology , Male , Membranes, Artificial , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/therapeutic use , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL