Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Nature ; 566(7744): 403-406, 2019 02.
Article in English | MEDLINE | ID: mdl-30728499

ABSTRACT

Most tumours have an aberrantly activated lipid metabolism1,2 that enables them to synthesize, elongate and desaturate fatty acids to support proliferation. However, only particular subsets of cancer cells are sensitive to approaches that target fatty acid metabolism and, in particular, fatty acid desaturation3. This suggests that many cancer cells contain an unexplored plasticity in their fatty acid metabolism. Here we show that some cancer cells can exploit an alternative fatty acid desaturation pathway. We identify various cancer cell lines, mouse hepatocellular carcinomas, and primary human liver and lung carcinomas that desaturate palmitate to the unusual fatty acid sapienate to support membrane biosynthesis during proliferation. Accordingly, we found that sapienate biosynthesis enables cancer cells to bypass the known fatty acid desaturation pathway that is dependent on stearoyl-CoA desaturase. Thus, only by targeting both desaturation pathways is the in vitro and in vivo proliferation of cancer cells that synthesize sapienate impaired. Our discovery explains metabolic plasticity in fatty acid desaturation and constitutes an unexplored metabolic rewiring in cancers.


Subject(s)
Fatty Acids/chemistry , Fatty Acids/metabolism , Metabolic Networks and Pathways , Neoplasms/metabolism , Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation , Fatty Acid Desaturases/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Oleic Acids/metabolism , Palmitates/metabolism , Palmitic Acids/metabolism , Stearoyl-CoA Desaturase/metabolism
2.
NMR Biomed ; : e5117, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38356104

ABSTRACT

It has been shown using proton magnetic resonance spectroscopy (1 H MRS) that, in a group of females, whole-body insulin resistance was more closely related to accumulation of saturated intramyocellular lipid (IMCL) than to IMCL concentration alone. This has not been investigated in males. We investigated whether age- and body mass index-matched healthy males differ from the previously reported females in IMCL composition (measured as CH2 :CH3 ) and IMCL concentration (measured as CH3 ), and in their associations with insulin resistance. We ask whether saturated IMCL accumulation is more strongly associated with insulin resistance than other ectopic and adipose tissue lipid pools and remains a significant predictor when these other pools are taken into account. In this group of males, who had similar overall insulin sensitivity to the females, IMCL was similar between sexes. The males demonstrated similar and even stronger associations of IMCL with insulin resistance, supporting the idea that a marker reflecting the accumulation of saturated IMCL is more strongly associated with whole-body insulin resistance than IMCL concentration alone. However, this marker ceased to be a significant predictor of whole-body insulin resistance after consideration of other lipid pools, which implies that this measure carries no more information in practice than the other predictors we found, such as intrahepatic lipid and visceral adipose tissue. As the marker of saturated IMCL accumulation appears to be related to these two predictors and has a much smaller dynamic range, this finding does not rule out a role for it in the pathogenesis of insulin resistance.

3.
Gut ; 72(8): 1607-1619, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37286229

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) represents a major public health concern and is associated with a substantial global burden of liver-related and cardiovascular-related morbidity and mortality. High total energy intake coupled with unhealthy consumption of ultra-processed foods and saturated fats have long been regarded as major dietary drivers of NAFLD. However, there is an accumulating body of evidence demonstrating that the timing of energy intake across a the day is also an important determinant of individual risk for NAFLD and associated metabolic conditions. This review summarises the available observational and epidemiological data describing associations between eating patterns and metabolic disease, including the negative effects of irregular meal patterns, skipping breakfast and night-time eating on liver health. We suggest that that these harmful behaviours deserve greater consideration in the risk stratification and management of patients with NAFLD particularly in a 24-hour society with continuous availability of food and with up to 20% of the population now engaged in shiftwork with mistimed eating patterns. We also draw on studies reporting the liver-specific impact of Ramadan, which represents a unique real-world opportunity to explore the physiological impact of fasting. By highlighting data from preclinical and pilot human studies, we present a further biological rationale for manipulating timing of energy intake to improve metabolic health and discuss how this may be mediated through restoration of natural circadian rhythms. Lastly, we comprehensively review the landscape of human trials of intermittent fasting and time-restricted eating in metabolic disease and offer a look to the future about how these dietary strategies may benefit patients with NAFLD and non-alcoholic steatohepatitis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Intermittent Fasting , Energy Intake , Diet , Feeding Behavior , Eating
4.
Am J Physiol Cell Physiol ; 325(5): C1158-C1177, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37642240

ABSTRACT

Circadian rhythms are endogenous oscillations with approximately a 24-h period that allow organisms to anticipate the change between day and night. Disruptions that desynchronize or misalign circadian rhythms are associated with an increased risk of cardiometabolic disease. This review focuses on the liver circadian clock as relevant to the risk of developing metabolic diseases including nonalcoholic fatty liver disease (NAFLD), insulin resistance, and type 2 diabetes (T2D). Many liver functions exhibit rhythmicity. Approximately 40% of the hepatic transcriptome exhibits 24-h rhythms, along with rhythms in protein levels, posttranslational modification, and various metabolites. The liver circadian clock is critical for maintaining glucose and lipid homeostasis. Most of the attention in the metabolic field has been directed toward diet, exercise, and rather little to modifiable risks due to circadian misalignment or disruption. Therefore, the aim of this review is to systematically analyze the various approaches that study liver circadian pathways, targeting metabolic liver diseases, such as diabetes, nonalcoholic fatty liver disease, using human, rodent, and cell biology models.NEW & NOTEWORTHY Over the past decade, there has been an increased interest in understanding the intricate relationship between circadian rhythm and liver metabolism. In this review, we have systematically searched the literature to analyze the various experimental approaches utilizing human, rodent, and in vitro cellular approaches to dissect the link between liver circadian rhythms and metabolic disease.


Subject(s)
Circadian Clocks , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Humans , Circadian Rhythm/physiology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Rodentia
5.
Magn Reson Med ; 89(4): 1314-1322, 2023 04.
Article in English | MEDLINE | ID: mdl-36573435

ABSTRACT

PURPOSE: Acetylcarnitine can be assessed in vivo using proton MRS (1 H-MRS) with long TEs and this has been previously applied successfully in muscle. The aim of this study was to evaluate a 1 H-MRS technique for liver acetylcarnitine quantification in healthy humans before and after l-carnitine supplementation. METHOD: Baseline acetylcarnitine levels were quantified using a STEAM sequence with prolonged TE in 15 healthy adults. Using STEAM with four different TEs was evaluated in phantoms. To assess reproducibility of the measurements, five of the participants had repeated 1 H-MRS without receiving l-carnitine supplementation. To determine if liver acetylcarnitine could be changed after l-carnitine supplementation, acetylcarnitine was quantified 2 h after intravenous l-carnitine supplementation (50 mg/kg body weight) in the other 10 participants. Hepatic lipids were also quantified from the 1 H-MRS spectra. RESULTS: There was good separation between the acetylcarnitine and fat in the phantoms using TE = 100 ms. Hepatic acetylcarnitine levels were reproducible (coefficient of reproducibility = 0.049%) and there was a significant (p < 0.001) increase in the relative abundance after a single supplementation of l-carnitine. Hepatic allylic, methyl, and methylene peaks were not altered by l-carnitine supplementation in healthy volunteers. CONCLUSION: Our results demonstrate that our 1 H-MRS technique could be used to measure acetylcarnitine in the liver and detect changes following intravenous supplementation in healthy adults despite the presence of lipids. Our techniques should be explored further in the study of fatty liver disease, where acetylcarnitine is suggested to be altered due to hepatic inflexibilities.


Subject(s)
Acetylcarnitine , Carnitine , Adult , Humans , Reproducibility of Results , Muscle, Skeletal , Liver/diagnostic imaging , Dietary Supplements , Lipids
6.
Curr Opin Clin Nutr Metab Care ; 26(2): 65-71, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36892956

ABSTRACT

PURPOSE OF REVIEW: De novo lipogenesis (DNL) is a metabolic process occurring mainly within the liver, in humans. Insulin is a primary signal for promoting DNL; thus, nutritional state is a key determinant for upregulation of the pathway. However, the effects of dietary macronutrient composition on hepatic DNL remain unclear. Nor is it clear if a nutrition-induced increase in DNL results in accumulation of intra-hepatic triglyceride (IHTG); a mechanism often proposed for pathological IHTG. Here, we review the latest evidence surrounding the nutritional regulation of hepatic DNL. RECENT FINDINGS: The role of carbohydrate intake on hepatic DNL regulation has been well studied, with only limited data on the effects of fats and proteins. Overall, increasing carbohydrate intake typically results in an upregulation of DNL, with fructose being more lipogenic than glucose. For fat, it appears that an increased intake of n-3 polyunsaturated fatty acids downregulates DNL, whilst, in contrast, an increased dietary protein intake may upregulate DNL. SUMMARY: Although DNL is upregulated with high-carbohydrate or mixed-macronutrient meal consumption, the effects of fat and protein remain unclear. Additionally, the effects of different phenotypes (including sex, age, ethnicity, and menopause status) in combination with different diets (enriched in different macronutrients) on hepatic DNL requires elucidation.


Subject(s)
Lipogenesis , Non-alcoholic Fatty Liver Disease , Female , Humans , Dietary Proteins/pharmacology , Dietary Proteins/metabolism , Dietary Carbohydrates/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
7.
Proc Natl Acad Sci U S A ; 117(41): 25869-25879, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989157

ABSTRACT

The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding. We find no evidence for transcription factor tethering and DNA-binding domain-independent action. Moreover, hepatocyte-specific deletion of Reverbα drives only modest physiological and transcriptional dysregulation, with derepressed target gene enrichment limited to circadian processes. Thus, contrary to previous reports, hepatic REVERBα does not repress lipogenesis under basal conditions. REVERBα control of a more extensive transcriptional program is only revealed under conditions of metabolic perturbation (including mistimed feeding, which is a feature of the global Reverbα-/- mouse). Repressive action of REVERBα in the liver therefore serves to buffer against metabolic challenge, rather than drive basal rhythmicity in metabolic activity.


Subject(s)
Energy Metabolism , Liver/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Amino Acid Motifs , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Circadian Clocks , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/chemistry , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
8.
J Hepatol ; 76(3): 526-535, 2022 03.
Article in English | MEDLINE | ID: mdl-34710482

ABSTRACT

BACKGROUND & AIMS: There is substantial inter-individual variability in the risk of non-alcoholic fatty liver disease (NAFLD). Part of which is explained by insulin resistance (IR) ('MetComp') and part by common modifiers of genetic risk ('GenComp'). We examined how IR on the one hand and genetic risk on the other contribute to the pathogenesis of NAFLD. METHODS: We studied 846 individuals: 492 were obese patients with liver histology and 354 were individuals who underwent intrahepatic triglyceride measurement by proton magnetic resonance spectroscopy. A genetic risk score was calculated using the number of risk alleles in PNPLA3, TM6SF2, MBOAT7, HSD17B13 and MARC1. Substrate concentrations were assessed by serum NMR metabolomics. In subsets of participants, non-esterified fatty acids (NEFAs) and their flux were assessed by D5-glycerol and hyperinsulinemic-euglycemic clamp (n = 41), and hepatic de novo lipogenesis (DNL) was measured by D2O (n = 61). RESULTS: We found that substrate surplus (increased concentrations of 28 serum metabolites including glucose, glycolytic intermediates, and amino acids; increased NEFAs and their flux; increased DNL) characterized the 'MetComp'. In contrast, the 'GenComp' was not accompanied by any substrate excess but was characterized by an increased hepatic mitochondrial redox state, as determined by serum ß-hydroxybutyrate/acetoacetate ratio, and inhibition of hepatic pathways dependent on tricarboxylic acid cycle activity, such as DNL. Serum ß-hydroxybutyrate/acetoacetate ratio correlated strongly with all histological features of NAFLD. IR and hepatic mitochondrial redox state conferred additive increases in histological features of NAFLD. CONCLUSIONS: These data show that the mechanisms underlying 'Metabolic' and 'Genetic' components of NAFLD are fundamentally different. These findings may have implications with respect to the diagnosis and treatment of NAFLD. LAY SUMMARY: The pathogenesis of non-alcoholic fatty liver disease can be explained in part by a metabolic component, including obesity, and in part by a genetic component. Herein, we demonstrate that the mechanisms underlying these components are fundamentally different: the metabolic component is characterized by hepatic oversupply of substrates, such as sugars, lipids and amino acids. In contrast, the genetic component is characterized by impaired hepatic mitochondrial function, making the liver less able to metabolize these substrates.


Subject(s)
Metabolic Diseases/genetics , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Adult , Biopsy/methods , Biopsy/statistics & numerical data , Female , Finland/epidemiology , Humans , Liver/pathology , Liver/physiopathology , Male , Metabolic Diseases/complications , Metabolic Diseases/epidemiology , Middle Aged , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Risk Factors
9.
J Intern Med ; 292(2): 296-307, 2022 08.
Article in English | MEDLINE | ID: mdl-34982494

ABSTRACT

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Subject(s)
Fatty Liver , Insulins , Sterol O-Acyltransferase , Animals , Cholesterol Esters/metabolism , Fatty Liver/metabolism , Glucose/metabolism , Insulins/metabolism , Lipoproteins, VLDL/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Triglycerides , Sterol O-Acyltransferase 2
10.
Curr Opin Clin Nutr Metab Care ; 25(4): 241-247, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35762159

ABSTRACT

PURPOSE OF REVIEW: Intrahepatic triglyceride (IHTG) content is determined by substrate flux to, fatty acid synthesis and partitioning within, and triglyceride disposal from the liver. Dysregulation of these processes may cause IHTG accumulation, potentially leading to nonalcoholic fatty liver disease. The aetiology of IHTG accumulation has not been fully elucidated; however, environmental factors and heritability are important. Here, we review recent evidence regarding the contribution of metabolic and genetic components of IHTG accumulation. RECENT FINDINGS: Obesity and insulin resistance are the primary metabolic drivers for IHTG accumulation. These risk factors have pronounced and seemingly overlapping effects on all processes involved in determining IHTG content. The strong and interchangeable associations between obesity, insulin resistance and IHTG make it challenging to determine their relative contributions. Genome-wide association studies have identified a growing list of single nucleotide polymorphisms associated with IHTG content and recent work has begun to elucidate their mechanistic effects. The mechanisms underlying metabolic and genetic drivers of IHTG appear to be distinct. SUMMARY: Both metabolic and genetic factors influence IHTG content by apparently distinct mechanisms. Further work is needed to determine metabolic and genetic interaction effects, which may lead to more personalized and potentially efficacious therapeutic interventions. The development of a comprehensive polygenic risk score for IHTG content may help facilitate this.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Genome-Wide Association Study , Glucose Clamp Technique , Humans , Insulin Resistance/genetics , Non-alcoholic Fatty Liver Disease/genetics , Obesity/complications , Triglycerides/metabolism
11.
Arterioscler Thromb Vasc Biol ; 41(11): 2823-2836, 2021 11.
Article in English | MEDLINE | ID: mdl-34470478

ABSTRACT

Objective: We recently showed that measurement of the susceptibility of LDL (low-density lipoprotein) to aggregation is an independent predictor of cardiovascular events. We now wished to compare effects of overfeeding different dietary macronutrients on LDL aggregation, proteoglycan-binding of plasma lipoproteins, and on the concentration of oxidized LDL in plasma, 3 in vitro parameters consistent with increased atherogenicity. Approach and Results: The participants (36 subjects; age, 48+/-10 years; body mass index, 30.9+/-6.2 kg/m2) were randomized to consume an extra 1000 kcal/day of either unsaturated fat, saturated fat, or simple sugars (CARB) for 3 weeks. We measured plasma proatherogenic properties (susceptibility of LDL to aggregation, proteoglycan-binding, oxidized LDL) and concentrations and composition of plasma lipoproteins using nuclear magnetic resonance spectroscopy, and in LDL using liquid chromatography mass spectrometry, before and after the overfeeding diets. LDL aggregation increased in the saturated fat but not the other groups. This change was associated with increased sphingolipid and saturated triacylglycerols in LDL and in plasma and reduction of clusterin on LDL particles. Proteoglycan binding of plasma lipoproteins decreased in the unsaturated fat group relative to the baseline diet. Lipoprotein properties remained unchanged in the CARB group. Conclusions: The type of fat during 3 weeks of overfeeding is an important determinant of the characteristics and functional properties of plasma lipoproteins in humans.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Fats, Unsaturated/adverse effects , Lipoproteins, LDL/blood , Proteoglycans/blood , Adult , Chromatography, Liquid , Dietary Fats/administration & dosage , Fats, Unsaturated/administration & dosage , Female , Humans , Male , Middle Aged , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregates , Protein Binding , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
12.
J Cell Physiol ; 236(10): 7033-7044, 2021 10.
Article in English | MEDLINE | ID: mdl-33738797

ABSTRACT

Fatty acids (FA) exert physiological and pathophysiological effects leading to changes in skeletal muscle metabolism and function, however, in vitro models to investigate these changes are limited. These experiments sought to establish the effects of physiological and pathophysiological concentrations of exogenous FA upon the function of tissue engineered skeletal muscle (TESkM). Cultured initially for 14 days, C2C12 TESkM was exposed to FA-free bovine serum albumin alone or conjugated to a FA mixture (oleic, palmitic, linoleic, and α-linoleic acids [OPLA] [ratio 45:30:24:1%]) at different concentrations (200 or 800 µM) for an additional 4 days. Subsequently, TESkM morphology, functional capacity, gene expression and insulin signaling were analyzed. There was a dose response increase in the number and size of lipid droplets within the TESkM (p < .05). Exposure to exogenous FA increased the messenger RNA expression of genes involved in lipid storage (perilipin 2 [p < .05]) and metabolism (pyruvate dehydrogenase lipoamide kinase isozyme 4 [p < .01]) in a dose dependent manner. TESkM force production was reduced (tetanic and single twitch) (p < .05) and increases in transcription of type I slow twitch fiber isoform, myosin heavy chain 7, were observed when cultured with 200 µM OPLA compared to control (p < .01). Four days of OPLA exposure results in lipid accumulation in TESkM which in turn results in changes in muscle function and metabolism; thus, providing insight ito the functional and mechanistic changes of TESkM in response to exogenous FA.


Subject(s)
Fatty Acids/toxicity , Lipid Droplets/drug effects , Lipid Metabolism/drug effects , Muscle, Skeletal/drug effects , Myoblasts, Skeletal/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Gene Expression Regulation , Insulin/pharmacology , Lipid Droplets/metabolism , Lipid Metabolism/genetics , Mice , Muscle Strength/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Myoblasts, Skeletal/metabolism , Myoblasts, Skeletal/pathology , Tissue Engineering
13.
Clin Endocrinol (Oxf) ; 95(1): 101-106, 2021 07.
Article in English | MEDLINE | ID: mdl-33715205

ABSTRACT

OBJECTIVE: Obesity and liver fat are associated with decreased levels of serum sex hormone binding globulin (SHBG). Laboratory studies suggest that hepatic de novo lipogenesis (DNL) is involved in the downregulation of SHBG synthesis. The aim of the present study was to address the role of DNL on serum SHBG in humans. DESIGN: A cross-sectional study examining the association between DNL, measured by stable isotopes, and serum SHBG, stratified by sex. PARTICIPANTS: Healthy men (n = 34) and women (n = 21) were combined from two cross-sectional studies. Forty-two per cent of participants had hepatic steatosis, and the majority were overweight (62%) or obese (27%). RESULTS: DNL was inversely associated with SHBG in women (ß: -0.015, 95% CI: -0.030; 0.000), but not in men (ß: 0.007, 95% CI: -0.005; 0.019) (p for interaction = .068). Adjustment for study population, age and body mass index did not materially change these results, although statistical significance was lost after adjustment for serum insulin. CONCLUSIONS: An inverse association between DNL and SHBG may explain the decreased SHBG levels that are observed in obesity, at least in women.


Subject(s)
Fatty Liver , Sex Hormone-Binding Globulin , Body Mass Index , Cross-Sectional Studies , Female , Humans , Lipogenesis , Male , Sex Hormone-Binding Globulin/metabolism
14.
Nature ; 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32203362
15.
Curr Opin Clin Nutr Metab Care ; 23(6): 373-379, 2020 11.
Article in English | MEDLINE | ID: mdl-32833701

ABSTRACT

PURPOSE OF REVIEW: Prevalence of metabolic-associated fatty liver disease (MAFLD) is increasing, and as pharmacological treatment does not exist, lifestyle interventions (i.e. diet and exercise) represent the cornerstone management and treatment strategy. Although the available data clearly demonstrate that changes in lifestyle influence intrahepatic triglyceride (IHTG) content, the mechanisms through which this is achieved are seldom investigated. Here, we review recent evidence demonstrating the influence of lifestyle interventions on hepatic fatty acid metabolism and IHTG content. RECENT FINDINGS: Diet and exercise influence IHTG content through various, and often interrelated factors. These include alterations in whole-body and tissue-specific insulin sensitivity, which may influence the flux of fatty acid and lipogenic substrates to the liver, and changes in intrahepatic fatty acid synthesis and partitioning. Notably, there are only a few studies that have investigated intrahepatic fatty acid metabolism in vivo in humans before and after an intervention. SUMMARY: Lifestyle interventions represent an effective means of influencing hepatic fatty acid metabolism. IHTG content is decreased without weight-loss either through exercise or by changing the macronutrient composition of the diet, although what the optimal macronutrient composition is to achieve this has yet to be defined.


Subject(s)
Fatty Acids/metabolism , Life Style , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Diet Therapy/methods , Dietary Fats/metabolism , Eating/physiology , Exercise/physiology , Humans , Insulin Resistance , Lipid Metabolism , Liver/metabolism , Triglycerides/metabolism
16.
Liver Int ; 40(9): 2128-2138, 2020 09.
Article in English | MEDLINE | ID: mdl-32386450

ABSTRACT

BACKGROUND & AIMS: The I148M variant in PNPLA3 is the major genetic risk factor for non-alcoholic fatty liver disease (NAFLD). The liver is enriched with polyunsaturated triglycerides (PUFA-TGs) in PNPLA3-I148M carriers. Gene expression data indicate that PNPLA3 is liver-specific in humans, but whether it functions in adipose tissue (AT) is unknown. We investigated whether PNPLA3-I148M modifies AT metabolism in human NAFLD. METHODS: Profiling of the AT lipidome and fasting serum non-esterified fatty acid (NEFA) composition was conducted in 125 volunteers (PNPLA3148MM/MI , n = 63; PNPLA3148II , n = 62). AT fatty acid composition was determined in 50 volunteers homozygous for the variant (PNPLA3148MM , n = 25) or lacking the variant (PNPLA3148II , n = 25). Whole-body insulin sensitivity of lipolysis was determined using [2 H5 ]glycerol, and PNPLA3 mRNA and protein levels were measured in subcutaneous AT and liver biopsies in a subset of the volunteers. RESULTS: PUFA-TGs were significantly increased in AT in carriers versus non-carriers of PNPLA3-I148M. The variant did not alter the rate of lipolysis or the composition of fasting serum NEFAs. PNPLA3 mRNA was 33-fold higher in the liver than in AT (P < .0001). In contrast, PNPLA3 protein levels per tissue protein were three-fold higher in AT than the liver (P < .0001) and nine-fold higher when related to whole-body AT and liver tissue masses (P < .0001). CONCLUSIONS: Contrary to previous assumptions, PNPLA3 is highly abundant in AT. PNPLA3-I148M locally remodels AT TGs to become polyunsaturated as it does in the liver, without affecting lipolysis or composition of serum NEFAs. Changes in AT metabolism do not contribute to NAFLD in PNPLA3-I148M carriers.


Subject(s)
Lipase , Non-alcoholic Fatty Liver Disease , Adipose Tissue , Genetic Predisposition to Disease , Humans , Lipase/genetics , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Triglycerides
17.
J Lipid Res ; 60(7): 1323-1332, 2019 07.
Article in English | MEDLINE | ID: mdl-31048405

ABSTRACT

Intramyocellular lipid (IMCL) accumulation has been linked to both insulin-resistant and insulin-sensitive (athletes) states. Biochemical analysis of intramuscular triglyceride composition is confounded by extramyocellular triglycerides in biopsy samples, and hence the specific composition of IMCLs is unknown in these states. 1H magnetic resonance spectroscopy (MRS) can be used to overcome this problem. Thus, we used a recently validated 1H MRS method to compare the compositional saturation index (CH2:CH3) and concentration independent of the composition (CH3) of IMCLs in the soleus and tibialis anterior muscles of 16 female insulin-resistant lipodystrophic subjects with that of age- and gender-matched athletes (n = 14) and healthy controls (n = 41). The IMCL CH2:CH3 ratio was significantly higher in both muscles of the lipodystrophic subjects compared with controls but was similar in athletes and controls. IMCL CH2:CH3 was dependent on the IMCL concentration in the controls and, after adjusting the compositional index for quantity (CH2:CH3adj), could distinguish lipodystrophics from athletes. This CH2:CH3adj marker had a stronger relationship with insulin resistance than IMCL concentration alone and was inversely related to VO2max The association of insulin resistance with the accumulation of saturated IMCLs is consistent with a potential pathogenic role for saturated fat and the reported benefits of exercise and diet in insulin-resistant states.


Subject(s)
Fatty Acids/metabolism , Insulin Resistance/physiology , Muscle, Skeletal/metabolism , Adult , Choline-Phosphate Cytidylyltransferase/genetics , Exercise/physiology , Female , Heart Rate/physiology , Humans , Insulin/metabolism , Insulin Resistance/genetics , Lamin Type A/genetics , Lipodystrophy/genetics , Lipodystrophy/metabolism , Magnetic Resonance Spectroscopy , Male , Triglycerides/metabolism
18.
J Physiol ; 597(14): 3527-3537, 2019 07.
Article in English | MEDLINE | ID: mdl-30883738

ABSTRACT

Excessive consumption of free sugars (which typically includes a composite of glucose and fructose) is associated with an increased risk of developing chronic metabolic diseases including obesity, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes and cardiovascular disease. Determining the utilisation, storage and fate of dietary sugars in metabolically relevant tissues is fundamental to understanding their contribution to metabolic disease risk. To date, the study of fructose metabolism has primarily focused on the liver, where it has been implicated in impaired insulin sensitivity, increased fat accumulation and dyslipidaemia. Yet we still have only a limited understanding of the mechanisms by which consumption of fructose, as part of a mixed meal, may alter hepatic fatty acid synthesis and partitioning. Moreover, surprisingly little is known about the metabolism of fructose within other organs, specifically subcutaneous adipose tissue, which is the largest metabolically active organ in the human body and is consistently exposed to nutrient fluxes. This review summarises what is known about fructose metabolism in the liver and adipose tissue and examines evidence for tissue-specific and sex-specific responses to fructose.


Subject(s)
Fructose/metabolism , Metabolic Diseases/metabolism , Adipose Tissue/metabolism , Animals , Cardiovascular Diseases/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism
19.
Liver Transpl ; 25(10): 1503-1513, 2019 10.
Article in English | MEDLINE | ID: mdl-31206217

ABSTRACT

Clinical adoption of normothermic machine perfusion (NMP) may be facilitated by simplifying logistics and reducing costs. This can be achieved by cold storage of livers for transportation to recipient centers before commencing NMP. The purpose of this study was to assess the safety and feasibility of post-static cold storage normothermic machine perfusion (pSCS-NMP) in liver transplantation. In this multicenter prospective study, 31 livers were transplanted. The primary endpoint was 30-day graft survival. Secondary endpoints included the following: peak posttransplant aspartate aminotransferase (AST), early allograft dysfunction (EAD), postreperfusion syndrome (PRS), adverse events, critical care and hospital stay, biliary complications, and 12-month graft survival. The 30-day graft survival rate was 94%. Livers were preserved for a total of 14 hours 10 minutes ± 4 hours 46 minutes, which included 6 hours 1 minute ± 1 hour 19 minutes of static cold storage before 8 hours 24 minutes ± 4 hours 4 minutes of NMP. Median peak serum AST in the first 7 days postoperatively was 457 U/L (92-8669 U/L), and 4 (13%) patients developed EAD. PRS was observed in 3 (10%) livers. The median duration of initial critical care stay was 3 days (1-20 days), and median hospital stay was 13 days (7-31 days). There were 7 (23%) patients who developed complications of grade 3b severity or above, and 2 (6%) patients developed biliary complications: 1 bile leak and 1 anastomotic stricture with no cases of ischemic cholangiopathy. The 12-month overall graft survival rate (including death with a functioning graft) was 84%. In conclusion, this study demonstrates that pSCS-NMP was feasible and safe, which may facilitate clinical adoption.


Subject(s)
Graft Survival , Liver Transplantation/adverse effects , Organ Preservation/methods , Perfusion/methods , Postoperative Complications/epidemiology , Adolescent , Adult , Aged , Allografts/blood supply , Cold Temperature , End Stage Liver Disease/diagnosis , End Stage Liver Disease/surgery , Feasibility Studies , Female , Follow-Up Studies , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Liver/blood supply , Liver Transplantation/methods , Male , Middle Aged , Organ Preservation/adverse effects , Perfusion/adverse effects , Postoperative Complications/etiology , Prospective Studies , Severity of Illness Index , Time Factors , Warm Ischemia/adverse effects , Young Adult
20.
Diabetes Obes Metab ; 21(4): 749-760, 2019 04.
Article in English | MEDLINE | ID: mdl-30456918

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver diseases, of which the first stage is steatosis. It is one of the most common liver diseases in developed countries and there is a clear association between type 2 diabetes (T2DM) and NAFLD. It is estimated that 70% of people with T2DM have NAFLD and yet there is currently no licensed pharmacological agent to treat it. Whilst lifestyle modification may ameliorate liver fat, it is often difficult to achieve or sustain; thus, there is great interest in pharmacological treatments for NAFLD. Metformin is the first-line medication in the management of T2DM and evidence from animal and human studies has suggested that it may be useful in reducing liver fat via inhibition of lipogenesis and increased fatty acid oxidation. Findings from the majority of studies undertaken in rodent models clearly suggest that metformin may be a powerful therapeutic agent specifically to reduce liver fat accumulation; data from human studies are less convincing. In the present review we discuss the evidence for the specific effects of metformin treatment on liver fat accumulation in animal and human studies, as well as the underlying proposed mechanisms, to try and understand and reconcile the difference in findings between rodent and human work in this area.


Subject(s)
Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Humans , Hypoglycemic Agents/pharmacology , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Metformin/pharmacology , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Oxidation-Reduction/drug effects , Rats , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL