ABSTRACT
Non-coding genetic variation is a major driver of phenotypic diversity and allows the investigation of mechanisms that control gene expression. Here, we systematically investigated the effects of >50 million variations from five strains of mice on mRNA, nascent transcription, transcription start sites, and transcription factor binding in resting and activated macrophages. We observed substantial differences associated with distinct molecular pathways. Evaluating genetic variation provided evidence for roles of â¼100 TFs in shaping lineage-determining factor binding. Unexpectedly, a substantial fraction of strain-specific factor binding could not be explained by local mutations. Integration of genomic features with chromatin interaction data provided evidence for hundreds of connected cis-regulatory domains associated with differences in transcription factor binding and gene expression. This system and the >250 datasets establish a substantial new resource for investigation of how genetic variation affects cellular phenotypes.
Subject(s)
Genetic Variation , Macrophages/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Bone Marrow Cells/cytology , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cluster Analysis , Enhancer Elements, Genetic/genetics , Female , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/geneticsABSTRACT
The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.
Subject(s)
Clone Cells , Mosaicism , Neocortex , Cell Lineage , Cells, Cultured , Humans , Microglia , Neocortex/cytology , Neocortex/growth & developmentABSTRACT
Our understanding of transcription by RNA polymerase II (Pol II) is limited by our knowledge of the factors that mediate this critically important process. Here we describe the identification of NDF, a nucleosome-destabilizing factor that facilitates Pol II transcription in chromatin. NDF has a PWWP motif, interacts with nucleosomes near the dyad, destabilizes nucleosomes in an ATP-independent manner, and facilitates transcription by Pol II through nucleosomes in a purified and defined transcription system as well as in cell nuclei. Upon transcriptional induction, NDF is recruited to the transcribed regions of thousands of genes and colocalizes with a subset of H3K36me3-enriched regions. Notably, the recruitment of NDF to gene bodies is accompanied by an increase in the transcript levels of many of the NDF-enriched genes. In addition, the global loss of NDF results in a decrease in the RNA levels of many genes. In humans, NDF is present at high levels in all tested tissue types, is essential in stem cells, and is frequently overexpressed in breast cancer. These findings indicate that NDF is a nucleosome-destabilizing factor that is recruited to gene bodies during transcriptional activation and facilitates Pol II transcription through nucleosomes.
Subject(s)
Drosophila Proteins/metabolism , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Oxidoreductases/metabolism , Transcription, Genetic/genetics , Amino Acid Motifs/genetics , Animals , Breast Neoplasms/genetics , Cell Nucleus , Chromatin/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Escherichia coli/genetics , Gene Expression Regulation/genetics , Histones/metabolism , Humans , Mice , Nuclear Proteins/genetics , Oxidoreductases/genetics , Protein Transport , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolismABSTRACT
Inhibition of the co-stimulatory ligand CD40L has shown beneficial effects in many experimental models of autoimmune disease and inflammation. Here, we show that CD40L deficiency in T cells in mice causes a reduction of CD4+ T-cell activation and specifically a strong reduction in IFN-γ-producing Th1 cells. In vitro, we could not reproduce this antigen presenting cell-dependent effects, but found that T-cell CD40L affects cell death and proliferation. We identified receptor of activated C kinase, the canonical PKC binding partner and known to drive proliferation and apoptosis, as a mediator of CD40L reverse signaling. Furthermore, we found that CD40L clustering stabilizes IFN-γ mediated Th1 polarization through STAT1, a known binding partner of receptor of activated C kinase. Together this highlights the importance of both CD40L forward and reverse signaling.
Subject(s)
CD40 Ligand , Lymphocyte Activation , Mice , Animals , Receptors for Activated C Kinase , Th1 Cells , Antigen-Presenting Cells , CD40 Antigens , CD4-Positive T-LymphocytesABSTRACT
Immaturity of alveolar macrophages (AMs) around birth contributes to the susceptibility of newborns to lung disease. However, the molecular features differentiating neonatal and mature, adult AMs are poorly understood. In this study, we identify the unique transcriptomes and enhancer landscapes of neonatal and adult AMs in mice. Although the core AM signature was similar, murine adult AMs expressed higher levels of genes involved in lipid metabolism, whereas neonatal AMs expressed a largely proinflammatory gene profile. Open enhancer regions identified by an assay for transposase-accessible chromatin followed by high-throughput sequencing (ATAC-seq) contained motifs for nuclear receptors, MITF, and STAT in adult AMs and AP-1 and NF-κB in neonatal AMs. Intranasal LPS activated a similar innate immune response in both neonatal and adult mice, with higher basal expression of inflammatory genes in neonates. The lung microenvironment drove many of the distinguishing gene expression and open chromatin characteristics of neonatal and adult AMs. Neonatal mouse AMs retained high expression of some proinflammatory genes, suggesting that the differences in neonatal AMs result from both inherent cell properties and environmental influences.
Subject(s)
Macrophages, Alveolar , NF-kappa B , Animals , Chromatin/genetics , Chromatin/metabolism , Lung/metabolism , Mice , NF-kappa B/metabolism , Transcription, GeneticABSTRACT
The pervasive role of the innate immune system is established by interferons. Emerging research shows an underappreciated ability of macrophages to regulate and propagate interferon responses in infectious and autoinflammatory disease states. In this review, we will discuss recent findings demonstrating the immunomodulating effects of macrophage interferon signaling. Apart from provoking cellular antimicrobial defenses, interferons augment the inflammatory activity of macrophages. These immunologic adaptations place the macrophage in the center of the interferon system and at the forefront of immunity. Consequently, macrophages are implicated in the pathogenesis of interferon-driven autoinflammatory disorders, such as SLE. In these disease states, the recognition of immunogenic ligands triggers macrophages to adopt an inflammatory phenotype through interferon signaling. This will amplify immune responses, eventually leading to autoinflammation. A better understanding of the macrophage's role in interferon signaling will support the future elucidation of novel targets amendable for clinical treatment.
Subject(s)
Immunity, Innate , Macrophages , Humans , Inflammation , InterferonsABSTRACT
Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.
Subject(s)
Macrophages , Sterols , Animals , Humans , Mice , Liver X Receptors/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Receptors, Immunologic , Sterols/metabolism , Transcription Factors/metabolismABSTRACT
Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.
Subject(s)
F-Box Proteins/antagonists & inhibitors , Genome-Wide Association Study , Heparitin Sulfate/metabolism , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Algorithms , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Extracellular Matrix/genetics , High-Throughput Screening Assays , Humans , Protein Binding/genetics , RNA-Seq , Sulfotransferases/antagonists & inhibitorsABSTRACT
MOTIVATION: Genetic variation in regulatory elements can alter transcription factor (TF) binding by mutating a TF binding motif, which in turn may affect the activity of the regulatory elements. However, it is unclear which motifs are prone to impact transcriptional regulation if mutated. Current motif analysis tools either prioritize TFs based on motif enrichment without linking to a function or are limited in their applications due to the assumption of linearity between motifs and their functional effects. RESULTS: We present MAGGIE (Motif Alteration Genome-wide to Globally Investigate Elements), a novel method for identifying motifs mediating TF binding and function. By leveraging measurements from diverse genotypes, MAGGIE uses a statistical approach to link mutations of a motif to changes of an epigenomic feature without assuming a linear relationship. We benchmark MAGGIE across various applications using both simulated and biological datasets and demonstrate its improvement in sensitivity and specificity compared with the state-of-the-art motif analysis approaches. We use MAGGIE to gain novel insights into the divergent functions of distinct NF-κB factors in pro-inflammatory macrophages, revealing the association of p65-p50 co-binding with transcriptional activation and the association of p50 binding lacking p65 with transcriptional repression. AVAILABILITY AND IMPLEMENTATION: The Python package for MAGGIE is freely available at https://github.com/zeyang-shen/maggie. The accession number for the NF-κB ChIP-seq data generated for this study is Gene Expression Omnibus: GSE144070. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Subject(s)
Genetic Variation , Transcription Factors , Base Sequence , Binding Sites , Nucleotide Motifs/genetics , Sequence Analysis, DNA , Transcription Factors/geneticsABSTRACT
AIMS: Migration of monocytes into the arterial wall contributes to arterial inflammation and atherosclerosis progression. Since elevated low-density lipoprotein cholesterol (LDL-C) levels have been associated with activation of plasma monocytes, intensive LDL-C lowering may reverse these pro-inflammatory changes. Using proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (mAbs) which selectively reduce LDL-C, we studied the impact of LDL-C lowering on monocyte phenotype and function in patients with familial hypercholesterolaemia (FH) not using statins due to statin-associated muscle symptoms. METHODS AND RESULTS: We assessed monocyte phenotype and function using flow cytometry and a trans-endothelial migration assay in FH patients (n = 22: LDL 6.8 ± 1.9 mmol/L) and healthy controls (n = 18, LDL 2.9 ± 0.8 mmol/L). Monocyte chemokine receptor (CCR) 2 expression was approximaterly three-fold higher in FH patients compared with controls. C-C chemokine receptor type 2 (CCR2) expression correlated significantly with plasma LDL-C levels (r = 0.709) and was positively associated with intracellular lipid accumulation. Monocytes from FH patients also displayed enhanced migratory capacity ex vivo. After 24 weeks of PCSK9 mAb treatment (n = 17), plasma LDL-C was reduced by 49%, which coincided with reduced intracellular lipid accumulation and reduced CCR2 expression. Functional relevance was substantiated by the reversal of enhanced migratory capacity of monocytes following PCSK9 mAb therapy. CONCLUSIONS: Monocytes of FH patients have a pro-inflammatory phenotype, which is dampened by LDL-C lowering by PCSK9 mAb therapy. LDL-C lowering was paralleled by reduced intracellular lipid accumulation, suggesting that LDL-C lowering itself is associated with anti-inflammatory effects on circulating monocytes.
Subject(s)
Antibodies, Monoclonal/administration & dosage , Hyperlipoproteinemia Type II/drug therapy , Monocytes/immunology , Proprotein Convertase 9/immunology , Analysis of Variance , Antibodies, Monoclonal, Humanized , Case-Control Studies , Cholesterol, LDL/metabolism , Drug Administration Schedule , Female , Humans , Hyperlipoproteinemia Type II/immunology , Interleukin-10/biosynthesis , Lipid Metabolism/drug effects , Male , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Receptors, CCR2/drug effects , Receptors, CCR2/metabolism , Tumor Necrosis Factors/metabolismABSTRACT
Helminths have strong immunoregulatory properties that may be exploited in treatment of chronic immune disorders, such as multiple sclerosis and inflammatory bowel disease. Essential players in the pathogenesis of these diseases are proinflammatory macrophages. We present evidence that helminths modulate the function and phenotype of these innate immune cells. We found that soluble products derived from the Trichuris suis (TsSP) significantly affect the differentiation of monocytes into macrophages and their subsequent polarization. TsSPs reduce the expression and production of inflammatory cytokines, including IL-6 and TNF, in human proinflammatory M1 macrophages. TsSPs induce a concomitant anti-inflammatory M2 signature, with increased IL-10 production. Furthermore, they suppress CHIT activity and enhance secretion of matrix metalloproteinase 9. Short-term triggering of monocytes with TsSPs early during monocyte-to-macrophage differentiation imprinted these phenotypic alterations, suggesting long-lasting epigenetic changes. The TsSP-induced effects in M1 macrophages were completely reversed by inhibiting histone deacetylases, which corresponded with decreased histone acetylation at the TNF and IL6 promoters. These results demonstrate that TsSPs have a potent and sustained immunomodulatory effect on human macrophage differentiation and polarization through epigenetic remodeling and provide new insights into the mechanisms by which helminths modulate human immune responses.-Hoeksema, M. A., Laan, L. C., Postma, J. J., Cummings, R. D., de Winther, M. P. J., Dijkstra, C. D., van Die, I., Kooij, G. Treatment with Trichuris suis soluble products during monocyte-to-macrophage differentiation reduces inflammatory responses through epigenetic remodeling.
Subject(s)
Cell Differentiation/drug effects , Epigenesis, Genetic/drug effects , Lipopolysaccharides/pharmacology , Macrophages/physiology , Monocytes/physiology , Trichuris/metabolism , Animals , Cells, Cultured , Cytokines/metabolism , Epigenesis, Genetic/physiology , Gene Expression Regulation/drug effects , Helminth Proteins , Humans , Inflammation , Lipopolysaccharides/chemistry , Trichuris/chemistryABSTRACT
Macrophages form a heterogeneous population of immune cells, which is critical for both the initiation and resolution of inflammation. They can be skewed to a proinflammatory subtype by the Th1 cytokine IFN-γ and further activated with TLR triggers, such as LPS. In this work, we investigated the effects of IFN-γ priming on LPS-induced gene expression in primary mouse macrophages. Surprisingly, we found that IFN-γ priming represses a subset of LPS-induced genes, particularly genes involved in cellular movement and leukocyte recruitment. We found STAT1-binding motifs enriched in the promoters of these repressed genes. Furthermore, in the absence of STAT1, affected genes are derepressed. We also observed epigenetic remodeling by IFN-γ priming on enhancer or promoter sites of repressed genes, which resulted in less NF-κB p65 recruitment to these sites without effects on global NF-κB activation. Finally, the epigenetic and transcriptional changes induced by IFN-γ priming reduce neutrophil recruitment in vitro and in vivo. Our data show that IFN-γ priming changes the inflammatory repertoire of macrophages, leading to a change in neutrophil recruitment to inflammatory sites.
Subject(s)
Cell Movement/immunology , Epigenesis, Genetic/immunology , Interferon-gamma/immunology , Macrophages/immunology , Neutrophils/immunology , Animals , Cell Movement/drug effects , Epigenesis, Genetic/drug effects , Female , Inflammation/immunology , Lipopolysaccharides/pharmacology , Mice , Mice, Knockout , Response Elements/immunology , STAT1 Transcription Factor/immunology , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , Transcription Factor RelA/immunologyABSTRACT
Foam cell formation is a crucial event in atherogenesis. While interferon-ß (IFNß) is known to promote atherosclerosis in mice, studies on the role of IFNß on foam cell formation are minimal and conflicting. We therefore extended these studies using both in vitro and in vivo approaches and examined IFNß's function in macrophage foam cell formation. To do so, murine bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages were loaded with acLDL overnight, followed by 6h IFNß co-treatment. This increased lipid content as measured by Oil red O staining. We next analyzed the lipid uptake pathways of IFNß-stimulated BMDMs and observed increased endocytosis of DiI-acLDL as compared to controls. These effects were mediated via SR-A, as its gene expression was increased and inhibition of SR-A with Poly(I) blocked the IFNß-induced increase in Oil red O staining and DiI-acLDL endocytosis. The IFNß-induced increase in lipid content was also associated with decreased ApoA1-mediated cholesterol efflux, in response to decreased ABCA1 protein and gene expression. To validate our findings in vivo, LDLR(-/-) mice were put on chow or a high cholesterol diet for 10weeks. 24 and 8h before sacrifice mice were injected with IFNß or PBS, after which thioglycollate-elicited peritoneal macrophages were collected and analyzed. In accordance with the in vitro data, IFNß increased lipid accumulation. In conclusion, our experimental data support the pro-atherogenic role of IFNß, as we show that IFNß promotes macrophage foam cell formation by increasing SR-A-mediated cholesterol influx and decreasing ABCA1-mediated efflux mechanisms.
Subject(s)
Cholesterol/metabolism , Foam Cells/drug effects , Interferon-beta/pharmacology , Macrophages/drug effects , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Biological Transport/drug effects , Blotting, Western , Cells, Cultured , Foam Cells/metabolism , Gene Expression/drug effects , Humans , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Scavenger Receptors, Class A/genetics , Scavenger Receptors, Class A/metabolismABSTRACT
Modulation of hematopoietic stem and progenitor cells (HSPCs) determines immune cell function. In this study, we investigated how hypercholesterolemia affects HSPC biology and atherosclerosis. Hypercholesterolemia induced loss of HSPC quiescence, characterized by increased proliferation and expression of cyclin B1, C1, and D1, and a decreased expression of Rb, resulting in a 3.6- fold increase in the number of HSPCs in hypercholesterolemic Ldlr(-/-) mice. Competitive bone marrow (BM) transplantations showed that a hypercholesterolemic BM microenvironment activates HSPCs and skews their development toward myeloid lineages. Conversely, hypercholesterolemia-primed HSPCs acquired an enhanced propensity to generate myeloid cells, especially granulocytes and Ly6C(high) monocytes, even in a normocholesterolemic BM microenvironment. In conformity, macrophages differentiated from hypercholesterolemia-primed HSPCs produced 17.0% more TNF-α, 21.3% more IL-6, and 10.5% more MCP1 than did their normocholesterolemic counterparts. Hypercholesterolemia-induced priming of HSPCs generated leukocytes that more readily migrated into the artery, which resulted in a 2.1-fold increase in atherosclerotic plaque size. In addition, these plaques had a more advanced phenotype and exhibited a 1.2-fold increase in macrophages and 1.8-fold increase in granulocytes. These results identify hypercholesterolemia-induced activation and priming of HSPCs as a novel pathway in the development of atherosclerosis. Inhibition of this proinflammatory differentiation pathway on the HSPC level has the potential to reduce atherosclerosis.
Subject(s)
Atherosclerosis/metabolism , Hematopoietic Stem Cells/cytology , Hypercholesterolemia/metabolism , Animals , Atherosclerosis/pathology , Bone Marrow Transplantation , Cell Differentiation , Cells, Cultured , Granulocytes/metabolism , Inflammation , Interleukin-6/metabolism , Lipoproteins/blood , Macrophages/metabolism , Male , Mice , Mice, Transgenic , Phenotype , Receptors, LDL/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
PURPOSE OF REVIEW: The first functions of macrophages to be identified by Metchnikoff were phagocytosis and microbial killing. Although these are important features, macrophages are functionally very complex and involved in virtually all aspects of life, from immunity and host defense, to homeostasis, tissue repair and development. To accommodate for this, macrophages adopt a plethora of polarization states. Understanding their transcriptional regulation and phenotypic heterogeneity is vital because macrophages are critical in many diseases and have emerged as attractive targets for therapy. Here, we review how epigenetic mechanisms control macrophage polarization. RECENT FINDINGS: It is becoming increasingly clear that chromatin remodelling governs multiple aspects of macrophage differentiation, activation and polarization. In recent years, independent research groups highlighted the importance of epigenetic mechanisms to regulate enhancer activity. Moreover, distinct histone-modifying enzymes were identified that control macrophage activation and polarization. SUMMARY: We recap epigenetic features of distinct enhancers and describe the role of Jumonji domain-containing protein 3 (Jmjd3) and Hdac3 as crucial mediators of macrophage differentiation, activation and polarization. We hypothesize that epigenetic enzymes could serve as the link between environment, cellular metabolism and macrophage phenotype. To conclude, we propose epigenetic intervention as a future pharmacological target to modulate macrophage polarization and to treat inflammatory diseases such as atherosclerosis.
Subject(s)
Atherosclerosis/genetics , Cell Differentiation/genetics , Epigenesis, Genetic , Macrophage Activation/genetics , Atherosclerosis/etiology , Cell Polarity/genetics , Gene Expression Regulation , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Macrophages/metabolism , Macrophages/pathology , Phagocytosis/geneticsABSTRACT
Macrophages determine the outcome of atherosclerosis by propagating inflammatory responses, foam cell formation and eventually necrotic core development. Yet, the pathways that regulate their atherogenic functions remain ill-defined. It is now apparent that chromatin remodeling chromatin modifying enzymes (CME) governs immune responses but it remains unclear to what extent they control atherogenic macrophage functions. We hypothesized that epigenetic mechanisms regulate atherogenic macrophage functions, thereby determining the outcome of atherosclerosis. Therefore, we designed a quantitative semi-high-throughput screening platform and studied whether the inhibition of CME can be applied to improve atherogenic macrophage activities. We found that broad spectrum inhibition of histone deacetylases (HDACs) and histone methyltransferases (HMT) has both pro- and anti-inflammatory effects. The inhibition of HDACs increased histone acetylation and gene expression of the cholesterol efflux regulators ATP-binding cassette transporters ABCA1 and ABCG1, but left foam cell formation unaffected. HDAC inhibition altered macrophage metabolism towards enhanced glycolysis and oxidative phosphorylation and resulted in protection against apoptosis. Finally, we applied inhibitors against specific HDACs and found that HDAC3 inhibition phenocopies the atheroprotective effects of pan-HDAC inhibitors. Based on our data, we propose the inhibition of HDACs, and in particular HDAC3, in macrophages as a novel potential target to treat atherosclerosis.
Subject(s)
Atherosclerosis/metabolism , Epigenesis, Genetic , Macrophages/cytology , Acetylation , Animals , Apoptosis , Cell Line , Chromatin/metabolism , Femur/metabolism , Foam Cells/cytology , Gene Expression Regulation , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Histones/chemistry , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Tibia/metabolismABSTRACT
The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.
Subject(s)
Animals, Newborn , Mice, Knockout , N-Acetylneuraminic Acid , STAT1 Transcription Factor , Sialic Acid Binding Ig-like Lectin 1 , Streptococcal Infections , Streptococcus agalactiae , Animals , Mice , Streptococcus agalactiae/immunology , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Immunity, Innate , Mice, Inbred C57BL , Lung/immunology , Lung/microbiology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Female , Macrophages/immunology , Macrophages/metabolism , Lectins/metabolism , Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Antigens, Differentiation, B-LymphocyteABSTRACT
T cells are the most common immune cells in atherosclerotic plaques, and the function of T cells can be altered by fatty acids. Here, we show that pre-exposure of CD4+ T cells to oleic acid, an abundant fatty acid linked to cardiovascular events, upregulates core metabolic pathways and promotes differentiation into interleukin-9 (IL-9)-producing cells upon activation. RNA sequencing of non-activated T cells reveals that oleic acid upregulates genes encoding key enzymes responsible for cholesterol and fatty acid biosynthesis. Transcription footprint analysis links these expression changes to the differentiation toward TH9 cells, a pro-atherogenic subset. Spectral flow cytometry shows that pre-exposure to oleic acid results in a skew toward IL-9+-producing T cells upon activation. Importantly, pharmacological inhibition of either cholesterol or fatty acid biosynthesis abolishes this effect, suggesting a beneficial role for statins beyond cholesterol lowering. Taken together, oleic acid may affect inflammatory diseases like atherosclerosis by rewiring T cell metabolism.
ABSTRACT
Recent years have seen a tremendous development of our insight into the biology of atherosclerosis and its acute thrombotic manifestations. Inflammation now takes center stage among traditional risk factors as a decisive factor in cardiovascular risk. Consequently, its assessment and modulation have become key to clinical care and fundamental research alike. Plaque macrophages orchestrate many of the inflammatory processes that occur throughout atherogenesis. These cells are characteristically heterogeneous and adopt diverse activation states in response to micro-environmental triggers. In this review, macrophage-mediated inflammation in atherosclerosis sets the scene for a discussion of the gene regulatory mechanisms that facilitate and shape polarized macrophage phenotypes. When applicable, we consider these factors within the context of atherosclerosis and reflect on opportunities for future application.