Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Neurochem Int ; 50(3): 507-16, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17169462

ABSTRACT

Oxidative stress plays crucial role in the pathogenesis of neurodegenerative diseases. However, the precise mechanism for an increased production of reactive oxygen species (ROS) under pathological conditions is not yet fully understood. We have recently demonstrated an implication of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a tumor suppressor, in ROS generation and neuronal apoptosis induced by staurosporine. These findings raised further interest whether PTEN functions as a common mediator of oxidative stress in neurodegenerative processes. To address this issue, neural cells were exposed to oxygen-glucose deprivation (OGD) and to the neurotoxin 1-methyl-4-phenylpyridinium iodide (MPP(+)), which mimic cerebral ischemia and Parkinson's disease, respectively. OGD for 4 h followed by 16 h of reoxygenation or incubation with MPP(+) (250 microM) for 48 h induced 33% and 45% neuronal death in rat hippocampal and in human dopaminergic SH-SY5Y neurons, respectively, accompanied by a gradual increase in the intracellular level of ROS. The increase in ROS by OGD and by MPP(+) did not cause oxidative inactivation of PTEN and thus, PTEN remains constitutively active. In support, the protein level of PTEN was not reduced in both cell cultures after challenging with OGD or MPP(+). Importantly, the elevated intracellular ROS levels and the neuronal death caused by OGD or by MPP(+) toxicity were significantly inhibited when PTEN was downregulated by a specific antisense oligonucleotide or by siRNA. Because SOD2 protein level is not altered either by knockdown of PTEN nor by an inhibition of the PI3K/Akt signalling, we suggest that SOD2 do not contribute to the pathomechanism of oxidative stress induced by PTEN or by inhibiting the related Akt signalling. The present study highlights PTEN as a crucial and common mediator of ROS generation and neuronal death and suggests that PTEN could become a potential therapeutic target for interfering with neurodegeneration.


Subject(s)
Cell Death , Neurons/cytology , PTEN Phosphohydrolase/physiology , Parkinson Disease/pathology , Reactive Oxygen Species/metabolism , Stroke/pathology , Animals , Cell Line , Hippocampus/metabolism , Hippocampus/pathology , Humans , Oxidative Stress , Parkinson Disease/metabolism , Rats , Rats, Inbred F344 , Stroke/metabolism
2.
Neurochem Int ; 48(2): 131-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16242215

ABSTRACT

The aim of this work was to test whether growth factors such as basic fibroblast growth factor (bFGF), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) undergo autophosphorylation and whether this affects their biological activity. Incubation of those growth factors with [gamma-(32)P]ATP resulted in phosphorylation in vitro. The phosphate bond was resistant to alkaline pH, yet acid-labile. Addition of alkaline phosphatase resulted in time and protein dependent dephosphorylation. Concomitantly, alkaline phosphatase abolished the neuroprotective effect of those growth factors upon oxygen and glucose deprivation and upon staurosporine-induced cell death. For those studies, we were using primary cultures of cortical and hippocampal neurons from embryonic and neonatal rats. Incubation of bFGF with non-hydrolyzable ATP-gammaS resulted in phosphorylation and in neuroprotection resistant to alkaline phosphatase. We conclude that bFGF, NGF and BDNF undergo autophosphorylation on site(s) other than serine, threonine, tyrosine and/or ATP-binding, and that this binding of phosphate is essential for neuroprotection in vivo.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Fibroblast Growth Factor 2/metabolism , Nerve Growth Factor/metabolism , Adenosine Triphosphate/metabolism , Animals , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL