Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Virol ; 95(18): e0079621, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34232070

ABSTRACT

The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/administration & dosage , Antibody-Dependent Cell Cytotoxicity/immunology , HIV Antibodies/administration & dosage , HIV Infections/prevention & control , HIV-1/immunology , Polysaccharides/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Glycosylation , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , Humans , Nicotiana/immunology , Nicotiana/virology
2.
J Virol ; 90(12): 5724-5734, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27053553

ABSTRACT

UNLABELLED: This study seeks to assess the ability of seasonal trivalent inactivated influenza vaccine (TIV) to induce nonneutralizing antibodies (Abs) with Fc-mediated functions in HIV-uninfected and HIV-infected subjects. Functional influenza-specific Ab responses were studied in 30 HIV-negative and 27 HIV-positive subjects immunized against seasonal influenza. All 57 subjects received the 2015 TIV. Fc-mediated antihemagglutinin (anti-HA) Ab activity was measured in plasma before and 4 weeks after vaccination using Fc-receptor-binding assays, NK cell activation assays, and phagocytosis assays. At baseline, the HIV-positive group had detectable but reduced functional Ab responses to both vaccine and nonvaccine influenza antigens. TIV enhanced Fc-mediated Ab responses in both HIV-positive and HIV-negative groups. A larger rise was generally observed in the HIV-positive group, such that there was no difference in functional Ab responses between the two groups after vaccination. The 2015 TIV enhanced functional influenza-specific Ab responses in both HIV-negative and HIV-positive subjects to a range of influenza HA proteins. The increase in functional Ab responses in the HIV-positive group supports recommendations to immunize this at-risk group. IMPORTANCE: Infection with HIV is associated with increasing disease severity following influenza infections, and annual influenza vaccinations are recommended for this target group. However, HIV-infected individuals respond relatively poorly to vaccination compared to healthy individuals, particularly if immunodeficient. There is therefore a need to increase our understanding of immunity to influenza in the context of underlying HIV infection. While antibodies can mediate direct virus neutralization, interactions with cellular Fc receptors may be important for anti-influenza immunity in vivo by facilitating antibody-dependent cellular cytotoxicity (ADCC) and/or antibody-dependent phagocytosis (ADP). The ability of seasonal influenza vaccines to induce antibody responses with potent Fc-mediated antiviral activity is currently unclear. Probing the ADCC and ADP responses to influenza vaccination has provided important new information in the quest to improve immunity to influenza.


Subject(s)
Antibodies, Viral/blood , HIV Infections/immunology , Influenza Vaccines/immunology , Receptors, Fc/immunology , Adult , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinins/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Male , Middle Aged , Phagocytosis , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Young Adult
3.
Clin Transl Immunology ; 12(11): e1474, 2023.
Article in English | MEDLINE | ID: mdl-38020728

ABSTRACT

Objectives: Tuberculosis (TB) remains a substantial cause of morbidity and mortality among people living with human immunodeficiency virus (HIV) worldwide. However, the immunological mechanisms associated with the enhanced susceptibility among HIV-positive individuals remain largely unknown. Methods: Here, we used a simian immunodeficiency virus (SIV)/TB-coinfection Mauritian cynomolgus macaque (MCM) model to examine humoral responses from the plasma of SIV-negative (n = 8) and SIV-positive (n = 7) MCM 8-week postinfection with Mycobacterium tuberculosis (Mtb). Results: Antibody responses to Mtb were impaired during SIV coinfection. Elevated inflammatory bulk IgG antibody glycosylation patterns were observed in coinfected macaques early at 8-week post-Mtb infection, including increased agalactosylation (G0) and reduced di-galactosylation (G2), which correlated with endpoint Mtb bacterial burden and gross pathology scores, as well as the time-to-necropsy. Conclusion: These studies suggest that humoral immunity may contribute to control of TB disease and support growing literature that highlights antibody Fc glycosylation as a biomarker of TB disease progression.

4.
Clin Transl Immunology ; 12(6): e1456, 2023.
Article in English | MEDLINE | ID: mdl-37383182

ABSTRACT

Objectives: Influenza causes significant morbidity and mortality, especially in high-risk populations. Although current vaccination regimens are the best method to combat annual influenza disease, vaccine efficacy can be low in high-risk groups, such as haematopoietic stem cell transplant (HSCT) recipients. Methods: We comprehensively assessed humoral immunity, antibody landscapes, systems serology and influenza-specific B-cell responses, together with their phenotypes and isotypes, to the inactivated influenza vaccine (IIV) in HSCT recipients in comparison to healthy controls. Results: Inactivated influenza vaccine significantly increased haemagglutination inhibition (HAI) titres in HSCT recipients, similar to healthy controls. Systems serology revealed increased IgG1 and IgG3 antibody levels towards the haemagglutinin (HA) head, but not to neuraminidase, nucleoprotein or HA stem. IIV also increased frequencies of total, IgG class-switched and CD21loCD27+ influenza-specific B cells, determined by HA probes and flow cytometry. Strikingly, 40% of HSCT recipients had markedly higher antibody responses towards A/H3N2 vaccine strain than healthy controls and showed cross-reactivity to antigenically drifted A/H3N2 strains by antibody landscape analysis. These superior humoral responses were associated with a greater time interval after HSCT, while multivariant analyses revealed the importance of pre-existing immune memory. Conversely, in HSCT recipients who did not respond to the first dose, the second IIV dose did not greatly improve their humoral response, although 50% of second-dose patients reached a seroprotective HAI titre for at least one of vaccine strains. Conclusions: Our study demonstrates efficient, although time-dependent, immune responses to IIV in HSCT recipients, and provides insights into influenza vaccination strategies targeted to immunocompromised high-risk groups.

5.
Immunol Lett ; 121(1): 61-73, 2008 Nov 16.
Article in English | MEDLINE | ID: mdl-18822317

ABSTRACT

Although anti-DNA antibodies have been decisively linked to the pathogenesis of lupus nephritis, the mechanisms have not been conclusively determined. Recently, we reported that anti-DNA antibodies may contribute to kidney damage by upregulation of proinflammatory genes in mesangial cells (MC), a process involving both Fc receptor-dependent and independent pathways. In investigating the mechanism by which pathogenic anti-DNA antibodies modulate gene expression in MC, we found that the pathogenic anti-DNA antibody 1A3F bound to high mobility group binding protein 1 (HMGB1), an endogenous ligand for TLR2/4 and RAGE (receptor for advanced glycation end products). Interestingly, HMGB1 treatment of MC induced a similar pattern of genes as stimulation with 1A3F. Furthermore, HMGB1 and 1A3F exhibited a synergistic proinflammatory effect in the kidney, where increased expression of HMGB1 was found in lupus patients but not in patients with other types of renal disease. TLR2/Fc and RAGE/Fc inhibited the proinflammatory effects of 1A3F on MC. Finally, we found enhanced susceptibility of lupus prone MRL-lpr/lpr (MRL/lpr) as compared to normal BALB/c derived MC to pathogenic anti-DNA antibody and LPS stimulation (in particular enhanced chemokine synthesis), in addition to significantly increased expression of TLR4. Our results suggest that gene upregulation in MC induced by nephritogenic anti-DNA antibodies is TLR2/4 and RAGE-dependent. Finally, HMGB1 may act as a proinflammatory mediator in antibody-induced kidney damage in systemic lupus erythematosus (SLE).


Subject(s)
Antibodies, Antinuclear/immunology , HMGB1 Protein/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Mesangial Cells/immunology , Animals , Down-Regulation/immunology , Female , Gene Expression , HMGB1 Protein/metabolism , Humans , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mesangial Cells/metabolism , Mesangial Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred MRL lpr , Mitogen-Activated Protein Kinases/immunology , Mitogen-Activated Protein Kinases/metabolism , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 2/immunology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism , Up-Regulation/immunology
6.
Arthritis Rheum ; 54(7): 2198-210, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16804897

ABSTRACT

OBJECTIVE: Lupus-associated IgG anti-double-stranded DNA antibodies are thought to be pathogenic in the kidney due to cross-reaction with glomerular antigens, leading subsequently to immune complex formation in situ and complement activation. We undertook this study to determine if pathogenic anti-DNA antibodies may also contribute to renal damage by directly influencing mesangial gene expression. METHODS: Complementary DNA microarray gene profiling was performed in primary mesangial cells (derived from lupus-prone MRL/lpr mice) treated with pathogenic, noncomplexed anti-DNA antibodies. Significant gene up-regulation induced by anti-DNA antibodies as determined by microarray analysis was further investigated by real-time polymerase chain reaction and methods to detect the relevant proteins. Induction of proinflammatory genes by pathogenic antibodies was confirmed by comparing gene expression in glomeruli of old versus young MRL/lpr mice, and by antibody injection in vivo. RESULTS: Pathogenic, but not nonpathogenic, antibodies significantly induced a number of transcripts, including CXCL1/KC, LCN2, iNOS, CX3CL1/fractalkine, SERPINA3G, and IkappaBalpha ("marker genes"). Blocking of Fcgamma receptors or using Fcgamma chain-knockout mesangial cells had no effect on the gene regulation effect of the pathogenic antibody R4A, indicating a non-Fc-dependent mechanism. The glomerular expression of these marker genes increased over time with the development of glomerular antibody deposition and active nephritis in MRL/lpr mice. Moreover, injection of R4A into SCID mice in vivo significantly up-regulated glomerular marker gene expression. CONCLUSION: These findings indicate that the renal pathogenicity of anti-DNA antibodies may be attributed in part to their ability to directly modulate gene expression in kidney mesangial cells through both Fc-dependent and non-Fc-dependent mechanisms.


Subject(s)
Antibodies, Antinuclear/adverse effects , Antibodies, Antinuclear/pharmacology , Lupus Vasculitis, Central Nervous System/genetics , Mesangial Cells/metabolism , Mice, Inbred MRL lpr/genetics , Up-Regulation/drug effects , Acute-Phase Proteins/genetics , Acute-Phase Proteins/metabolism , Animals , Cells, Cultured , Chemokine CX3CL1 , Chemokine CXCL1 , Chemokines, CX3C/genetics , Chemokines, CX3C/metabolism , Chemokines, CXC/genetics , Chemokines, CXC/metabolism , Female , I-kappa B Proteins/genetics , I-kappa B Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/physiopathology , Lipocalin-2 , Lipocalins , Lupus Vasculitis, Central Nervous System/metabolism , Lupus Vasculitis, Central Nervous System/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesangial Cells/drug effects , Mesangial Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, SCID , NF-KappaB Inhibitor alpha , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serpins/genetics , Serpins/metabolism , Up-Regulation/physiology
7.
Clin Immunol ; 118(2-3): 170-9, 2006.
Article in English | MEDLINE | ID: mdl-16332457

ABSTRACT

The substitution of plasmatic anti-RhD polyclonal antibodies by a monoclonal antibody (mAb) for preventing the hemolytic disease of the newborn (HDN) is an important issue due to supply and safety concerns. Since it has been suggested that FcgammaR are involved in the prevention of HDN, the in vitro functional properties of two anti-RhD mAbs differing through their glycosylation profiles were compared using FcgammaR-based assays to select a candidate mAb. T125(YB2/0), a low fucosylated antibody, bound strongly to both activating FcgammaRIII and inhibitory FcgammaRII, as opposed to its highly fucosylated counterpart. It also exerted a strong ADCC against RhD+ RBCs and a potent FcgammaRIIB-mediated inhibition of cytokine release. Moreover, an in vivo RhD+ red blood cells (RBCs) clearance assay showed that this antibody exhibits a RhD+ RBCs clearance as potent as polyclonal anti-RhD antibodies in NOD-SCID mice. Thus, T125(YB2/O) has been selected to be tested for the prevention of anti-RhD allo-immunization.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunoglobulin G/metabolism , Receptors, IgG/physiology , Rh-Hr Blood-Group System/immunology , Animals , Antibodies, Monoclonal/metabolism , Cell Line, Tumor , Erythrocytes/immunology , Glycosylation , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Rats , Receptors, IgG/metabolism
8.
J Immunol ; 174(2): 735-41, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15634893

ABSTRACT

Binding of intact Ag is a hallmark of Ag-specific B cells. Apart from B cells, a small number of non-B cells can bind Ag with comparable efficacy as B cells and are found in the peripheral blood, spleen, and bone marrow of mice. This population has been observed for a long time and recently named "Ag-capturing cells." Their identity remained enigmatic. In this study, we show that these cells are basophilic granulocytes. Their ability to capture Ags is dependent on surface IgE receptors and on Ag-specific plasma IgE molecules appearing after immunization. Several surface markers including surface bound IgE, IL-3R, CD45, CD16/32, and the chemokine receptor CCR2 were used to clearly identify these cells. Cross-linkage of surface Igs results in the release of large amounts of IL-4 and IL-6. The data identify basophils as Ag-capturing cells and support the concept of basophils as important regulators of humoral immune responses.


Subject(s)
Antigens/metabolism , Basophils/immunology , Basophils/metabolism , Animals , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Antigens/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Binding Sites/immunology , Cell Adhesion/immunology , Cells, Cultured , Epitopes/physiology , Luminescent Proteins/administration & dosage , Luminescent Proteins/immunology , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Phycocyanin/administration & dosage , Phycocyanin/immunology , Phycocyanin/metabolism , Receptors, IgE/physiology
SELECTION OF CITATIONS
SEARCH DETAIL