Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 584(7821): 437-442, 2020 08.
Article in English | MEDLINE | ID: mdl-32555388

ABSTRACT

During the coronavirus disease-2019 (COVID-19) pandemic, severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has led to the infection of millions of people and has claimed hundreds of thousands of lives. The entry of the virus into cells depends on the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2. Although there is currently no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19-convalescent individuals. Plasma samples collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres; titres were less than 50 in 33% of samples, below 1,000 in 79% of samples and only 1% of samples had titres above 5,000. Antibody sequencing revealed the expansion of clones of RBD-specific memory B cells that expressed closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on the RBD neutralized the virus with half-maximal inhibitory concentrations (IC50 values) as low as 2 ng ml-1. In conclusion, most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Antibody Specificity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Neutralization Tests , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Young Adult
2.
Nature ; 561(7724): 479-484, 2018 09.
Article in English | MEDLINE | ID: mdl-30258136

ABSTRACT

Individuals infected with HIV-1 require lifelong antiretroviral therapy, because interruption of treatment leads to rapid rebound viraemia. Here we report on a phase 1b clinical trial in which a combination of 3BNC117 and 10-1074, two potent monoclonal anti-HIV-1 broadly neutralizing antibodies that target independent sites on the HIV-1 envelope spike, was administered during analytical treatment interruption. Participants received three infusions of 30 mg kg-1 of each antibody at 0, 3 and 6 weeks. Infusions of the two antibodies were generally well-tolerated. The nine enrolled individuals with antibody-sensitive latent viral reservoirs maintained suppression for between 15 and more than 30 weeks (median of 21 weeks), and none developed viruses that were resistant to both antibodies. We conclude that the combination of the anti-HIV-1 monoclonal antibodies 3BNC117 and 10-1074 can maintain long-term suppression in the absence of antiretroviral therapy in individuals with antibody-sensitive viral reservoirs.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Virus Latency/immunology , Adolescent , Adult , Aged , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies , Carrier State/drug therapy , Carrier State/immunology , Carrier State/virology , Drug Combinations , Drug Resistance, Viral , Female , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Envelope Protein gp160/immunology , HIV Infections/virology , HIV-1/isolation & purification , Historically Controlled Study , Humans , Infusions, Intravenous , Male , Middle Aged , Phylogeny , Viremia/drug therapy , Viremia/immunology , Viremia/prevention & control , Viremia/virology , Virus Activation/immunology , Young Adult
3.
Trials ; 23(1): 263, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35382844

ABSTRACT

BACKGROUND: Antiretroviral therapy (ART) has led to dramatic improvements in survival for people living with HIV, but is unable to cure infection, or induce viral control off therapy. Designing intervention trials with novel agents with the potential to confer a period of HIV remission without ART remains a key scientific and community goal. We detail the rationale, design, and outcomes of a randomised, placebo-controlled trial of two HIV-specific long-acting broadly neutralising antibodies (bNAbs): 3BNC117-LS and 10-1074-LS, which target CD4 binding site and V3 loop respectively, on post-treatment viral control. METHODS: RIO is a randomised, placebo-controlled, double-blinded prospective phase II study. Eligible individuals will have started ART within 3 months of primary HIV infection and have viral sequences that appear to be sensitive to both bNAbs. It will randomise 72 eligible participants 1:1 to the following arms via a two-stage design. In Stage 1, arm A participants are given dual long-acting (LS-variants) bNAbs infusions, followed by intensively monitored Analytical Treatment Interruption (ATI) (n = 36); in arm B, participants receive placebo infusions followed by ATI. The primary endpoint will be time to viral rebound within 36 weeks after ATI. Upon viral rebound, the participant and researcher are unblinded. Participants in arm A recommence ART and complete the study. Participants in arm B are invited to restart ART and enroll into Stage 2 where they will receive open-label LS bNAbs, followed by a second ATI 24 weeks after. Secondary and exploratory endpoints include adverse events, time to undetectable viraemia after restarting ART, immunological markers, HIV proviral DNA, serum bNAb concentrations in blood, bNAb resistance at viral rebound, and quality of life measures. DISCUSSION: The two-stage design was determined in collaboration with community involvement. This design allows all participants the option to receive bNAbs. It also tests the hypothesis that bNAbs may drive sustained HIV control beyond the duration of detectable bNAb concentrations. Community representatives were involved at all stages. This included the two-stage design, discussion on the criteria to restart ART, frequency of monitoring visits off ART, and reducing the risk of onward transmission to HIV-negative partners. It also included responding to the challenges of COVID-19. TRIAL REGISTRATION: The protocol is registered on Clinical. TRIALS: gov and EudraCT and has approval from UK Ethics and MHRA.


Subject(s)
COVID-19 , HIV Infections , HIV-1 , Broadly Neutralizing Antibodies , Clinical Trials, Phase II as Topic , Community Participation , HIV Antibodies , HIV Infections/diagnosis , HIV Infections/drug therapy , Humans , Prospective Studies , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
4.
Antibodies (Basel) ; 9(3)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751063

ABSTRACT

The discovery of numerous potent and broad neutralizing antibodies (bNAbs) against Human Immunodeficiency Virus type 1 (HIV-1) envelope glycoprotein has invigorated the potential of using them as an effective preventative and therapeutic agent. The majority of the anti-HIV-1 antibodies, currently under clinical investigation, are formulated singly for intra-venous (IV) infusion. However, due to the high degree of genetic variability in the case of HIV-1, a single broad neutralizing antibody will likely not be sufficient to protect against the broad range of viral isolates. To that end, delivery of two or more co-formulated bnAbs against HIV-1 in a single subcutaneous (SC) injection is highly desired. We, therefore, co-formulated two anti-HIV bnAbs, 3BNC117-LS and 10-1074-LS, to a total concentration of 150 mg/mL for SC administration and analyzed them using a panel of analytical techniques. Chromatographic based methods, such as RP-HPLC, CEX-HPLC, SEC-HPLC, were developed to ensure separation and detection of each antibody in the co-formulated sample. In addition, we used a panel of diverse pseudoviruses to detect the functionality of individual antibodies in the co-formulation. We also used these methods to test the stability of the co-formulated antibodies and believe that such an approach can support future efforts towards the formulation and characterization of multiple high-concentration antibodies for SC delivery.

5.
Cell Host Microbe ; 28(2): 335-349.e6, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32504577

ABSTRACT

Although there is no effective cure for chronic hepatitis B virus (HBV) infection, antibodies are protective and correlate with recovery from infection. To examine the human antibody response to HBV, we screened 124 vaccinated and 20 infected, spontaneously recovered individuals. The selected individuals produced shared clones of broadly neutralizing antibodies (bNAbs) that targeted 3 non-overlapping epitopes on the HBV S antigen (HBsAg). Single bNAbs protected humanized mice against infection but selected for resistance mutations in mice with prior established infection. In contrast, infection was controlled by a combination of bNAbs targeting non-overlapping epitopes with complementary sensitivity to mutations that commonly emerge during human infection. The co-crystal structure of one of the bNAbs with an HBsAg peptide epitope revealed a stabilized hairpin loop. This structure, which contains residues frequently mutated in clinical immune escape variants, provides a molecular explanation for why immunotherapy for HBV infection may require combinations of complementary bNAbs.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Hepatitis B Antibodies/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Animals , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Child, Preschool , Disease Models, Animal , Epitopes/immunology , Female , HEK293 Cells , Hep G2 Cells , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Humans , Infant , Mice , Mice, Knockout , Protein Conformation
6.
bioRxiv ; 2020 May 22.
Article in English | MEDLINE | ID: mdl-32511384

ABSTRACT

During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal neutralizing titers ranging from undetectable in 33% to below 1:1000 in 79%, while only 1% showed titers >1:5000. Antibody cloning revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50s) as low as single digit ng/mL. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.

7.
PLoS One ; 14(8): e0219142, 2019.
Article in English | MEDLINE | ID: mdl-31393868

ABSTRACT

BACKGROUND: Additional forms of pre-exposure prophylaxis are needed to prevent HIV-1 infection. 3BNC117 and 10-1074 are broadly neutralizing anti-HIV-1 antibodies that target non-overlapping epitopes on the HIV-1 envelope. We investigated the safety, tolerability, pharmacokinetics, and immunogenicity of the intravenous administration of the combination of 3BNC117 and 10-1074 in healthy adults. METHODS: This randomized, double-blind, placebo-controlled, single center, phase 1 study enrolled healthy adults aged 18-65 years to receive one infusion of 3BNC117 immediately followed by 10-1074 at 10 mg/kg, three infusions of 3BNC117 followed by 10-1074 at 3 mg/kg or 10 mg/kg every 8 weeks, or placebo infusions. The primary outcomes were safety and pharmacokinetics. This trial is registered with ClinicalTrials.gov, number NCT02824536. FINDINGS: Twenty-four participants were enrolled in a 3:1 ratio to receive the study products or placebo. The combination of 3BNC117 and 10-1074 was safe and generally well tolerated. There were no serious adverse events considered related to the infusions. The mean elimination half-lives of 3BNC117 and 10-1074 were 16.4 ± 4.6 days and 23.0 ± 5.4 days, respectively, similar to what was observed in previous studies in which each antibody was administered alone. Anti-drug antibody responses were rare and without evidence of related adverse events or impact on elimination kinetics. INTERPRETATION: Single and repeated doses of the combination of 3BNC117 and 10-1074 were well tolerated in healthy adults. These data support the further development of the combination of 3BNC117 and 10-1074 as a long-acting injectable form of pre-exposure prophylaxis for the prevention of HIV-1 infection.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Broadly Neutralizing Antibodies/pharmacology , HIV Antibodies/pharmacology , HIV Infections/immunology , Administration, Intravenous/methods , Adult , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Broadly Neutralizing Antibodies/immunology , Double-Blind Method , Drug Therapy, Combination/methods , Female , HIV Antibodies/immunology , HIV Infections/prevention & control , HIV Seropositivity/drug therapy , HIV-1/immunology , HIV-1/pathogenicity , Healthy Volunteers , Humans , Male , Placebo Effect , Pre-Exposure Prophylaxis/methods
8.
Nat Med ; 24(11): 1701-1707, 2018 11.
Article in English | MEDLINE | ID: mdl-30258217

ABSTRACT

Monotherapy of HIV-1 infection with single antiretroviral agents is ineffective because error-prone HIV-1 replication leads to the production of drug-resistant viral variants1,2. Combinations of drugs can establish long-term control, however, antiretroviral therapy (ART) requires daily dosing, can cause side effects and does not eradicate the infection3,4. Although anti-HIV-1 antibodies constitute a potential alternative to ART5,6, treatment of viremic individuals with a single antibody also results in emergence of resistant viral variants7-9. Moreover, combinations of first-generation anti-HIV-1 broadly neutralizing antibodies (bNAbs) had little measurable effect on the infection10-12. Here we report on a phase 1b clinical trial ( NCT02825797 ) in which two potent bNAbs, 3BNC11713 and 10-107414, were administered in combination to seven HIV-1 viremic individuals. Infusions of 30 mg kg-1 of each of the antibodies were well-tolerated. In the four individuals with dual antibody-sensitive viruses, immunotherapy resulted in an average reduction in HIV-1 viral load of 2.05 log10 copies per ml that remained significantly reduced for three months following the first of up to three infusions. In addition, none of these individuals developed resistance to both antibodies. Larger studies will be necessary to confirm the efficacy of antibody combinations in reducing HIV-1 viremia and limiting the emergence of resistant viral variants.


Subject(s)
Antibodies, Neutralizing/administration & dosage , HIV Infections/drug therapy , Immunotherapy , Viremia/drug therapy , Adolescent , Adult , Aged , Antibodies, Neutralizing/adverse effects , Antiretroviral Therapy, Highly Active , Female , HIV Infections/virology , HIV Seropositivity , HIV-1/pathogenicity , Humans , Male , Middle Aged , Viral Load/drug effects , Viremia/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL