Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Allergy Clin Immunol ; 154(1): 209-221.e6, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38513838

ABSTRACT

BACKGROUND: Millions of people are exposed to landscape fire smoke (LFS) globally, and inhalation of LFS particulate matter (PM) is associated with poor respiratory and cardiovascular outcomes. However, how LFS affects respiratory and cardiovascular function is less well understood. OBJECTIVE: We aimed to characterize the pathophysiologic effects of representative LFS airway exposure on respiratory and cardiac function and on asthma outcomes. METHODS: LFS was generated using a customized combustion chamber. In 8-week-old female BALB/c mice, low (25 µg/m3, 24-hour equivalent) or moderate (100 µg/m3, 24-hour equivalent) concentrations of LFS PM (10 µm and below [PM10]) were administered daily for 3 (short-term) and 14 (long-term) days in the presence and absence of experimental asthma. Lung inflammation, gene expression, structural changes, and lung function were assessed. In 8-week-old male C57BL/6 mice, low concentrations of LFS PM10 were administered for 3 days. Cardiac function and gene expression were assessed. RESULTS: Short- and long-term LFS PM10 airway exposure increased airway hyperresponsiveness and induced steroid insensitivity in experimental asthma, independent of significant changes in airway inflammation. Long-term LFS PM10 airway exposure also decreased gas diffusion. Short-term LFS PM10 airway exposure decreased cardiac function and expression of gene changes relating to oxidative stress and cardiovascular pathologies. CONCLUSIONS: We characterized significant detrimental effects of physiologically relevant concentrations and durations of LFS PM10 airway exposure on lung and heart function. Our study provides a platform for assessment of mechanisms that underpin LFS PM10 airway exposure on respiratory and cardiovascular disease outcomes.


Subject(s)
Asthma , Mice, Inbred BALB C , Particulate Matter , Smoke , Animals , Female , Smoke/adverse effects , Asthma/physiopathology , Asthma/etiology , Male , Mice , Particulate Matter/adverse effects , Mice, Inbred C57BL , Lung/immunology , Lung/physiopathology , Wildfires , Disease Models, Animal
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38469627

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Subject(s)
Asthma , Cytokines , Endoplasmic Reticulum Stress , Epithelial Cells , Thymic Stromal Lymphopoietin , Toll-Like Receptor 3 , Unfolded Protein Response , Humans , Cytokines/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Asthma/metabolism , Asthma/pathology , Asthma/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Signal Transduction , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Bronchi/metabolism , Bronchi/pathology , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Cells, Cultured , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
J Neuroinflammation ; 21(1): 158, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879567

ABSTRACT

Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.


Subject(s)
Animals, Newborn , Chlamydia Infections , Chlamydia muridarum , Animals , Mice , Female , Chlamydia Infections/microbiology , Chlamydia Infections/pathology , Male , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology , Brain Stem/pathology , Neuroinflammatory Diseases/microbiology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/immunology , Sex Characteristics , Mice, Inbred C57BL , Cytokines/metabolism
4.
Am J Respir Crit Care Med ; 207(5): 553-565, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36170617

ABSTRACT

Rationale: Tissue-resident natural killer (trNK) cells have been identified in numerous organs, but little is known about their functional contribution to respiratory immunity, in particular during chronic lung diseases such as chronic obstructive pulmonary disease (COPD). Objectives: To investigate the phenotype and antiviral responses of trNK cells in murine cigarette smoke-induced experimental COPD and in human lung parenchyma from COPD donors. Methods: Mice were exposed to cigarette smoke for 12 weeks to induce COPD-like lung disease. Lung trNK cell phenotypes and function were analyzed by flow cytometry in both murine and human disease with and without challenge with influenza A virus. Measurements and Main Results: In the mouse lung, CD49a+CD49b+EOMES+ and CD49a+CD49b-EOMESlo NK cell populations had a distinct phenotype compared with CD49a- circulating NK cells. CD49a+ NK cells were more extensively altered earlier in disease onset than circulating NK cells, and increased proportions of CD49a+ NK cells correlated with worsening disease in both murine and human COPD. Furthermore, the presence of lung disease delayed both circulating and trNK cell functional responses to influenza infection. CD49a+ NK cells markedly increased their NKG2D, CD103, and CD69 expression in experimental COPD after influenza infection, and human CD49a+ NK cells were hyperactive to ex vivo influenza infection in COPD donors. Conclusions: Collectively, these results demonstrate that trNK cell function is altered in cigarette smoke-induced disease and suggests that smoke exposure may aberrantly prime trNK cell responsiveness to viral infection. This may contribute to excess inflammation during viral exacerbations of COPD.


Subject(s)
Influenza, Human , Lung Diseases , Pulmonary Disease, Chronic Obstructive , Humans , Mice , Animals , Integrin alpha1/metabolism , Influenza, Human/metabolism , Integrin alpha2/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Killer Cells, Natural , Lung/metabolism , Lung Diseases/metabolism , Antiviral Agents
5.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L385-L398, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37463835

ABSTRACT

Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral ß-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnß, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnß, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific ß-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.


Subject(s)
Asthma , Influenza A virus , Influenza, Human , Respiration Disorders , Respiratory Hypersensitivity , beta-Defensins , Pregnancy , Female , Mice , Animals , Humans , Cytokines/metabolism , Hyperplasia/pathology , Asthma/pathology , Lung/metabolism , Respiratory Hypersensitivity/pathology , Influenza, Human/pathology , Antiviral Agents/therapeutic use , RNA, Messenger , Pyroglyphidae , Disease Models, Animal
6.
Thorax ; 78(10): 957-965, 2023 10.
Article in English | MEDLINE | ID: mdl-36948588

ABSTRACT

BACKGROUND: Obesity is associated with more severe asthma, however, the mechanisms responsible are poorly understood. Obesity is also associated with low-grade systemic inflammation; it is possible that this inflammation extends to the airways of adults with asthma, contributing to worse asthma outcomes. Accordingly, the aim of this review was to examine whether obesity is associated with increased airway and systemic inflammation and adipokines, in adults with asthma. METHODS: Medline, Embase, CINAHL, Scopus and Current Contents were searched till 11 August 2021. Studies reporting measures of airway inflammation, systemic inflammation and/or adipokines in obese versus non-obese adults with asthma were assessed. We conducted random effects meta-analyses. We assessed heterogeneity using the I2 statistic and publication bias using funnel plots. RESULTS: We included 40 studies in the meta-analysis. Sputum neutrophils were 5% higher in obese versus non-obese asthmatics (mean difference (MD)=5.0%, 95% CI: 1.2 to 8.9, n=2297, p=0.01, I2=42%). Blood neutrophil count was also higher in obesity. There was no difference in sputum %eosinophils; however, bronchial submucosal eosinophil count (standardised mean difference (SMD)=0.58, 95% CI=0.25 to 0.91, p<0.001, n=181, I2=0%) and sputum interleukin 5 (IL-5) (SMD=0.46, 95% CI=0.17 to 0.75, p<0.002, n=198, I2=0%) were higher in obesity. Conversely, fractional exhaled nitric oxide was 4.5 ppb lower in obesity (MD=-4.5 ppb, 95% CI=-7.1 ppb to -1.8 ppb, p<0.001, n=2601, I2=40%). Blood C reactive protein, IL-6 and leptin were also higher in obesity. CONCLUSIONS: Obese asthmatics have a different pattern of inflammation to non-obese asthmatics. Mechanistic studies examining the pattern of inflammation in obese asthmatics are warranted. Studies should also investigate the clinical relevance of this altered inflammatory response. PROSPERO REGISTERATION NUMBER: CRD42021254525.


Subject(s)
Asthma , Adult , Humans , Asthma/metabolism , Inflammation/metabolism , Eosinophils/metabolism , Obesity/complications , Leukocyte Count , Sputum/metabolism
7.
Respir Res ; 24(1): 32, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36698141

ABSTRACT

Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.


Subject(s)
Asthma , Pyroglyphidae , Animals , Humans , Transcriptome , Lung/metabolism , Collagen/metabolism , Transcription Factors/metabolism , Disease Models, Animal
8.
Respir Res ; 24(1): 303, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38044426

ABSTRACT

BACKGROUND: Increased airway NLRP3 inflammasome-mediated IL-1ß responses may underpin severe neutrophilic asthma. However, whether increased inflammasome activation is unique to severe asthma, is a common feature of immune cells in all inflammatory types of severe asthma, and whether inflammasome activation can be therapeutically targeted in patients, remains unknown. OBJECTIVE: To investigate the activation and inhibition of inflammasome-mediated IL-1ß responses in immune cells from patients with asthma. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from patients with non-severe (n = 59) and severe (n = 36 stable, n = 17 exacerbating) asthma and healthy subjects (n = 39). PBMCs were stimulated with nigericin or lipopolysaccharide (LPS) alone, or in combination (LPS + nigericin), with or without the NLRP3 inhibitor MCC950, and the effects on IL-1ß release were assessed. RESULTS: PBMCs from patients with non-severe or severe asthma produced more IL-1ß in response to nigericin than those from healthy subjects. PBMCs from patients with severe asthma released more IL-1ß in response to LPS + nigericin than those from non-severe asthma. Inflammasome-induced IL-1ß release from PBMCs from patients with severe asthma was not increased during exacerbation compared to when stable. Inflammasome-induced IL-1ß release was not different between male and female, or obese and non-obese patients and correlated with eosinophil and neutrophil numbers in the airways. MCC950 effectively suppressed LPS-, nigericin-, and LPS + nigericin-induced IL-1ß release from PBMCs from all groups. CONCLUSION: An increased ability for inflammasome priming and/or activation is a common feature of systemic immune cells in both severe and non-severe asthma, highlighting inflammasome inhibition as a universal therapy for different subtypes of disease.


Subject(s)
Asthma , Inflammasomes , Humans , Male , Female , NLR Family, Pyrin Domain-Containing 3 Protein , Nigericin/pharmacology , Lipopolysaccharides , Leukocytes, Mononuclear , Interleukin-1beta , Asthma/diagnosis , Asthma/drug therapy , Sulfonamides
9.
J Allergy Clin Immunol ; 150(4): 817-829.e6, 2022 10.
Article in English | MEDLINE | ID: mdl-35643377

ABSTRACT

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.


Subject(s)
Asthma , Eosinophilia , Pulmonary Disease, Chronic Obstructive , Respiratory Hypersensitivity , Animals , Female , Mice , RNA , Transcription Factors , Transcriptome
10.
J Allergy Clin Immunol ; 149(4): 1270-1280, 2022 04.
Article in English | MEDLINE | ID: mdl-34678326

ABSTRACT

BACKGROUND: Obesity is a risk factor for asthma, and obese asthmatic individuals are more likely to have severe, steroid-insensitive disease. How obesity affects the pathogenesis and severity of asthma is poorly understood. Roles for increased inflammasome-mediated neutrophilic responses, type 2 immunity, and eosinophilic inflammation have been described. OBJECTIVE: We investigated how obesity affects the pathogenesis and severity of asthma and identified effective therapies for obesity-associated disease. METHODS: We assessed associations between body mass index and inflammasome responses with type 2 (T2) immune responses in the sputum of 25 subjects with asthma. Functional roles for NLR family, pyrin domain-containing (NLRP) 3 inflammasome and T2 cytokine responses in driving key features of disease were examined in experimental high-fat diet-induced obesity and asthma. RESULTS: Body mass index and inflammasome responses positively correlated with increased IL-5 and IL-13 expression as well as C-C chemokine receptor type 3 expression in the sputum of subjects with asthma. High-fat diet-induced obesity resulted in steroid-insensitive airway hyperresponsiveness in both the presence and absence of experimental asthma. High-fat diet-induced obesity was also associated with increased NLRP3 inflammasome responses and eosinophilic inflammation in airway tissue, but not lumen, in experimental asthma. Inhibition of NLRP3 inflammasome responses reduced steroid-insensitive airway hyperresponsiveness but had no effect on IL-5 or IL-13 responses in experimental asthma. Depletion of IL-5 and IL-13 reduced obesity-induced NLRP3 inflammasome responses and steroid-insensitive airway hyperresponsiveness in experimental asthma. CONCLUSION: We found a relationship between T2 cytokine and NLRP3 inflammasome responses in obesity-associated asthma, highlighting the potential utility of T2 cytokine-targeted biologics and inflammasome inhibitors.


Subject(s)
Asthma , Inflammasomes , Cytokines , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-13 , Interleukin-1beta , Interleukin-5 , NLR Family, Pyrin Domain-Containing 3 Protein , Obesity/complications
11.
Heart Lung Circ ; 32(11): 1378-1385, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37919117

ABSTRACT

AIM: Mouse models have indicated that the pneumococcal polysaccharide vaccine (PPV) can reduce atherosclerosis. This is probably through a process of molecular mimicry, where phosphorylcholine in the capsular polysaccharide of the vaccine elicits antibodies that cross-react with oxidised low-density lipoprotein and reduce plaque. We investigated whether a similar mechanism occurs in humans. METHODS: A large national blinded, randomised, placebo-controlled trial of the PPV (Australian Study for the Prevention through Immunisation of Cardiovascular Events [AUSPICE]) is underway with fatal and nonfatal cardiovascular disease (CVD) events as the primary outcome. Participants at one centre agreed to a substudy measuring a number of biomarkers and surrogates of CVD over 4 years, including anti-pneumococcal antibodies (immunoglobulin G and immunoglobulin M), C-reactive protein, carotid intima-media thickness, pulse wave velocity, insulin, fasting blood glucose, glycated haemoglobin, and hepatorenal index. RESULTS: Antipneumococcal immunoglobulin G and immunoglobulin M were both present and statistically significantly increased in the treated group compared to control at 4 years. However, there were no differences in any of the surrogate measures of CVD or metabolic markers at 4 years. CONCLUSIONS: While there were prolonged differences in anti-pneumococcal antibody titres following PPV vaccination, these did not appear to provide any cardioprotective effect, as measured by a range of markers. Final results using the fatal and nonfatal CVD events await the completion of national health record linkage next year. TRIAL REGISTRATION: ACTRN12615000536561.


Subject(s)
Cardiovascular Diseases , Carotid Intima-Media Thickness , Animals , Mice , Humans , Pulse Wave Analysis , Australia/epidemiology , Streptococcus pneumoniae , Vaccination , Pneumococcal Vaccines , Immunoglobulin G , Immunoglobulin M , Cardiovascular Diseases/prevention & control
12.
Thorax ; 77(5): 443-451, 2022 05.
Article in English | MEDLINE | ID: mdl-34510013

ABSTRACT

INTRODUCTION: The significance of endoplasmic reticulum (ER) stress in asthma is unclear. Here, we demonstrate that ER stress and the unfolded protein response (UPR) are related to disease severity and inflammatory phenotype. METHODS: Induced sputum (n=47), bronchial lavage (n=23) and endobronchial biopsies (n=40) were collected from participants with asthma with varying disease severity, inflammatory phenotypes and from healthy controls. Markers for ER stress and UPR were assessed. These markers were also assessed in established eosinophilic and neutrophilic murine models of asthma. RESULTS: Our results demonstrate increased ER stress and UPR pathways in asthma and these are related to clinical severity and inflammatory phenotypes. Genes associated with ER protein chaperone (BiP, CANX, CALR), ER-associated protein degradation (EDEM1, DERL1) and ER stress-induced apoptosis (DDIT3, PPP1R15A) were dysregulated in participants with asthma and are associated with impaired lung function (forced expiratory volume in 1 s) and active eosinophilic and neutrophilic inflammation. ER stress genes also displayed a significant correlation with classic Th2 (interleukin-4, IL-4/13) genes, Th17 (IL-17F/CXCL1) genes, proinflammatory (IL-1b, tumour necrosis factor α, IL-8) genes and inflammasome activation (NLRP3) in sputum from asthmatic participants. Mice with allergic airway disease (AAD) and severe steroid insensitive AAD also showed increased ER stress signalling in their lungs. CONCLUSION: Heightened ER stress is associated with severe eosinophilic and neutrophilic inflammation in asthma and may play a crucial role in the pathogenesis of asthma.


Subject(s)
Asthma , Animals , Asthma/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Humans , Inflammation/metabolism , Mice , Neutrophils/metabolism , Signal Transduction , Unfolded Protein Response
13.
Immunol Cell Biol ; 100(4): 235-249, 2022 04.
Article in English | MEDLINE | ID: mdl-35175629

ABSTRACT

Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) and absent in melanoma-2 (AIM2) inflammasomes in cigarette smoke-induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2-/- mice in cigarette smoke-induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2-/- mice had increased airway neutrophils with decreased caspase-1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti-Ly6G in experimental COPD in wild-type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti-Ly6G treatment in Aim2-/- mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase-1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti-Ly6G-mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase-1 in neutrophils.


Subject(s)
Cigarette Smoking , Neutrophils , Animals , Caspase 1 , Cigarette Smoking/adverse effects , DNA-Binding Proteins , Mice , Mice, Inbred C57BL , Neutrophil Infiltration
14.
BMC Pregnancy Childbirth ; 22(1): 919, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482359

ABSTRACT

BACKGROUND: Little is known about the physical and mental health impact of exposure to landscape fire smoke in women with asthma. This study examined the health impacts and information-seeking behaviours of women with asthma exposed to the 2019/2020 Australian fires, including women who were pregnant. METHODS: Women with asthma were recruited from the Breathing for Life Trial in Australia. Following the landscape fire exposure period, self-reported data were collected regarding symptoms (respiratory and non-respiratory), asthma exacerbations, wellbeing, quality of life, information seeking, and landscape fire smoke exposure mitigation strategies. Participants' primary residential location and fixed site monitoring was used to geolocate and estimate exposure to landscape fire-related fine Particulate Matter (PM2.5). RESULTS: The survey was completed by 81 pregnant, 70 breastfeeding and 232 non-pregnant and non-breastfeeding women with asthma. Participants had a median daily average of 17 µg/m3 PM2.5 and 105 µg/m3 peak PM2.5 exposure over the fire period (October 2019 to February 2020). Over 80% of participants reported non-respiratory and respiratory symptoms during the fire period and 41% reported persistent symptoms. Over 82% reported asthma symptoms and exacerbations of asthma during the fire period. Half the participants sought advice from a health professional for their symptoms. Most (97%) kept windows/doors shut when inside and 94% stayed indoors to minimise exposure to landscape fire smoke. Over two in five (43%) participants reported that their capacity to participate in usual activities was reduced due to prolonged smoke exposure during the fire period. Participants reported greater anxiety during the fire period than after the fire period (mean (SD) = 53(13) versus 39 (13); p < 0.001). Two in five (38%) pregnant participants reported having concerns about the effect of fire events on their pregnancy. CONCLUSION: Prolonged landscape fire smoke exposure during the 2019/2020 Australian fire period had a significant impact on the health and wellbeing of women with asthma, including pregnant women with asthma. This was despite most women taking actions to minimise exposure to landscape fire smoke. Effective and consistent public health messaging is needed during landscape fire events to guard the health of women with asthma.


Subject(s)
Quality of Life , Pregnancy , Female , Humans , Australia/epidemiology
15.
Am J Respir Crit Care Med ; 204(6): 667-681, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34133911

ABSTRACT

Rationale: Necroptosis, mediated by RIPK3 (receptor-interacting protein kinase 3) and MLKL (mixed lineage kinase domain-like), is a form of regulated necrosis that can drive tissue inflammation and destruction; however, its contribution to chronic obstructive pulmonary disease (COPD) pathogenesis is poorly understood. Objectives: To determine the role of necroptosis in COPD. Methods: Total and active (phosphorylated) RIPK3 and MLKL were measured in the lung tissue of patients with COPD and control subjects without COPD. Necroptosis-related mRNA and proteins as well as cell death were examined in lungs and pulmonary macrophages of mice with cigarette smoke (CS)-induced experimental COPD. The responses of Ripk3-/- and Mlkl-/- mice to acute and chronic CS exposure were compared with those of wild-type mice. The combined inhibition of apoptosis (with the pan-caspase inhibitor quinoline-Val-Asp-difluorophenoxymethylketone [qVD-OPh]) and necroptosis (with deletion of Mlkl in mice) was assessed. Measurements and Main Results: The total MLKL protein in the epithelium and macrophages and the pRIPK3 and pMLKL in lung tissue were increased in patients with severe COPD compared with never-smokers or smoker control subjects without COPD. Necroptosis-related mRNA and protein levels were increased in the lungs and macrophages in CS-exposed mice and experimental COPD. Ripk3 or Mlkl deletion prevented airway inflammation upon acute CS exposure. Ripk3 deficiency reduced airway inflammation and remodeling as well as the development of emphysematous pathology after chronic CS exposure. Mlkl deletion and qVD-OPh treatment reduced chronic CS-induced airway inflammation, but only Mlkl deletion prevented airway remodeling and emphysema. Ripk3 or Mlkl deletion and qVD-OPh treatment reduced CS-induced lung-cell death. Conclusions: Necroptosis is induced by CS exposure and is increased in the lungs of patients with COPD and in experimental COPD. Inhibiting necroptosis attenuates CS-induced airway inflammation, airway remodeling, and emphysema. Targeted inhibition of necroptosis is a potential therapeutic strategy in COPD.


Subject(s)
Airway Remodeling , Cigarette Smoking/adverse effects , Inflammation/etiology , Necroptosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/etiology , Animals , Case-Control Studies , Disease Progression , Humans , Inflammation/metabolism , Inflammation/physiopathology , Linear Models , Mice , Protein Kinases/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/physiopathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
16.
J Allergy Clin Immunol ; 147(6): 2134-2145.e20, 2021 06.
Article in English | MEDLINE | ID: mdl-33378691

ABSTRACT

BACKGROUND: NLRP1 is an innate immune sensor that can form cytoplasmic inflammasome complexes. Polymorphisms in NLRP1 are linked to asthma; however, there is currently no functional or mechanistic explanation for this. OBJECTIVE: We sought to clarify the role of NLRP1 in asthma pathogenesis. METHODS: Results from the GALA II cohort study were used to identify a link between NLRP1 and asthma in Mexican Americans. In vitro and in vivo models for NLRP1 activation were applied to investigate the role of this inflammasome in asthma at the molecular level. RESULTS: We document the association of an NLRP1 haplotype with asthma for which the single nucleotide polymorphism rs11651270 (M1184V) individually is the most significant. Surprisingly, M1184V increases NLRP1 activation in the context of N-terminal destabilization, but decreases NLRP1 activation on dipeptidyl peptidase 9 inhibition. In vitro studies demonstrate that M1184V increases binding to dipeptidyl peptidase 9, which can account for its inhibitory role in this context. In addition, in vivo data from a mouse model of airway inflammation reveal a protective role for NLRP1 inflammasome activation reducing eosinophilia in this setting. CONCLUSIONS: Linking our in vitro and in vivo results, we found that the NLRP1 variant M1184V reduces inflammasome activation in the context of dipeptidyl peptidase 9 inhibition and could thereby increase asthma severity. Our studies may have implications for the treatment of asthma in patients carrying this variant of NLRP1.


Subject(s)
Alleles , Asthma/etiology , Asthma/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Inflammasomes/metabolism , Mutation , NLR Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Asthma/diagnosis , Cell Line , Disease Models, Animal , Disease Susceptibility , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Genetic Predisposition to Disease , Humans , Mice , Mice, Knockout , NLR Proteins/chemistry , NLR Proteins/metabolism , Polymorphism, Single Nucleotide , Structure-Activity Relationship , Trauma Severity Indices
17.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613693

ABSTRACT

Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.


Subject(s)
Cigarette Smoking , Probiotics , Mice , Animals , Bifidobacterium , Probiotics/pharmacology , Butyrates , Acetates , Inflammation
18.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G420-G438, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33470153

ABSTRACT

Intestinal epithelia are critical for maintaining gastrointestinal homeostasis. Epithelial barrier injury, causing inflammation and vascular damage, results in inflammatory hypoxia, and thus, healing occurs in an oxygen-restricted environment. The transcription factor hypoxia-inducible factor (HIF)-1 regulates genes important for cell survival and repair, including the cell adhesion protein ß1-integrin. Integrins function as αß-dimers, and α-integrin-matrix binding is critical for cell migration. We hypothesized that HIF-1 stabilization accelerates epithelial migration through integrin-dependent pathways. We aimed to examine functional and posttranslational activity of α-integrins during HIF-1-mediated intestinal epithelial healing. Wound healing was assessed in T84 monolayers over 24 h with/without prolyl-hydroxylase inhibitor (PHDi) (GB-004), which stabilizes HIF-1. Gene and protein expression were measured by RT-PCR and immunoblot, and α-integrin localization was assessed by immunofluorescence. α-integrin function was assessed by antibody-mediated blockade, and integrin α6 regulation was determined by HIF-1α chromatin immunoprecipitation. Models of mucosal wounding and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis were used to examine integrin expression and localization in vivo. PHDi treatment accelerated wound closure and migration within 12 h, associated with increased integrin α2 and α6 protein, but not α3. Functional blockade of integrins α2 and α6 inhibited PHDi-mediated accelerated wound closure. HIF-1 bound directly to the integrin α6 promoter. PHDi treatment accelerated mucosal healing, which was associated with increased α6 immunohistochemical staining in wound-associated epithelium and wound-adjacent tissue. PHDi treatment increased α6 protein levels in colonocytes of TNBS mice and induced α6 staining in regenerating crypts and reepithelialized inflammatory lesions. Together, these data demonstrate a role for HIF-1 in regulating both integrin α2 and α6 responses during intestinal epithelial healing.NEW & NOTEWORTHY HIF-1 plays an important role in epithelial restitution, selectively inducing integrins α6 and α2 to promote migration and proliferation, respectively. HIF-stabilizing prolyl-hydroxylase inhibitors accelerate intestinal mucosal healing by inducing epithelial integrin expression.


Subject(s)
Colitis/prevention & control , Colon/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Integrin alpha Chains/metabolism , Intestinal Mucosa/drug effects , Prolyl-Hydroxylase Inhibitors/pharmacology , Wound Healing/drug effects , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Colon/metabolism , Colon/pathology , Disease Models, Animal , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Integrin alpha Chains/genetics , Integrin alpha2/metabolism , Integrin alpha6/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred BALB C , Protein Stability , Signal Transduction , Trinitrobenzenesulfonic Acid
19.
Clin Exp Allergy ; 51(1): 120-131, 2021 01.
Article in English | MEDLINE | ID: mdl-33098152

ABSTRACT

BACKGROUND: Asthma is an airway inflammatory disease and a major health problem worldwide. Anti-inflammatory steroids and bronchodilators are the gold-standard therapy for asthma. However, they do not prevent the development of the disease, and critically, a subset of asthmatics are resistant to steroid therapy. OBJECTIVE: To elucidate the therapeutic potential of human ß-defensins (hBD), such as hBD2 mild to moderate and severe asthma. METHODS: We investigated the role of hBD2 in a steroid-sensitive, house dust mite-induced allergic airways disease (AAD) model and a steroid-insensitive model combining ovalbumin-induced AAD with C muridarum (Cmu) respiratory infection. RESULTS: In both models, we demonstrated that therapeutic intranasal application of hBD2 significantly reduced the influx of inflammatory cells into the bronchoalveolar lavage fluid. Furthermore, key type 2 asthma-related cytokines IL-9 and IL-13, as well as additional immunomodulating cytokines, were significantly decreased after administration of hBD2 in the steroid-sensitive model. The suppression of inflammation was associated with improvements in airway physiology and treatment also suppressed airway hyper-responsiveness (AHR) in terms of airway resistance and compliance to methacholine challenge. CONCLUSIONS AND CLINICAL RELEVANCE: These data indicate that hBD2 reduces the hallmark features and has potential as a new therapeutic agent in allergic and especially steroid-resistant asthma.


Subject(s)
Airway Resistance/drug effects , Asthma/metabolism , Interleukin-13/metabolism , Interleukin-9/metabolism , Lung Compliance/drug effects , Lung/drug effects , beta-Defensins/pharmacology , Animals , Asthma/physiopathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Chlamydia Infections/metabolism , Chlamydia Infections/physiopathology , Chlamydia muridarum , Disease Models, Animal , Inflammation/metabolism , Inflammation/physiopathology , Lung/metabolism , Lung/physiopathology , Mice , Ovalbumin , Pyroglyphidae , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/physiopathology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/physiopathology
20.
J Pathol ; 251(1): 49-62, 2020 05.
Article in English | MEDLINE | ID: mdl-32083318

ABSTRACT

Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Iron/metabolism , Airway Remodeling/drug effects , Animals , Bleomycin/pharmacology , Cell Proliferation , Cells, Cultured , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung/drug effects , Lung/pathology , Macrophages/drug effects , Macrophages/pathology , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL