Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Transl Med ; 21(1): 198, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927689

ABSTRACT

BACKGROUND: Temozolomide (TMZ) is the preferred chemotherapy strategy for glioma therapy. As a second-generation alkylating agent, TMZ provides superior oral bio-availability. However, limited response rate (less than 50%) and high incidence of drug resistance seriously restricts TMZ's application, there still lack of strategies to increase the chemotherapy sensitivity. METHODS: Luci-GL261 glioma orthotopic xenograft model combined bioluminescence imaging was utilized to evaluate the anti-tumor effect of TMZ and differentiate TMZ sensitive (S)/non-sensitive (NS) individuals. Integrated microbiomics and metabolomics analysis was applied to disentangle the involvement of gut bacteria in TMZ sensitivity. Spearman's correlation analysis was applied to test the association between fecal bacteria levels and pharmacodynamics indices. Antibiotics treatment combined TMZ treatment was used to confirm the involvement of gut microbiota in TMZ response. Flow cytometry analysis, ELISA and histopathology were used to explore the potential role of immunoregulation in gut microbiota mediated TMZ response. RESULTS: Firstly, gut bacteria composition was significantly altered during glioma development and TMZ treatment. Meanwhile, in vivo anti-cancer evaluation suggested a remarkable difference in chemotherapy efficacy after TMZ administration. Moreover, 16s rRNA gene sequencing and non-targeted metabolomics analysis revealed distinct different gut microbiota and immune infiltrating state between TMZ sensitive and non-sensitive mice, while abundance of differential gut bacteria and related metabolites was significantly correlated with TMZ pharmacodynamics indices. Further verification suggested that gut microbiota deletion by antibiotics treatment could accelerate glioma development, attenuate TMZ efficacy and inhibit immune cells (macrophage and CD8α+ T cell) recruitment. CONCLUSIONS: The current study confirmed the involvement of gut microbiota in glioma development and individualized TMZ efficacy via immunomodulation, hence gut bacteria may serve as a predictive biomarker as well as a therapeutic target for clinical TMZ application.


Subject(s)
Brain Neoplasms , Gastrointestinal Microbiome , Glioma , Mice , Animals , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Antineoplastic Agents, Alkylating/therapeutic use , RNA, Ribosomal, 16S/genetics , Brain Neoplasms/genetics , Glioma/pathology , Immunomodulation , Cell Line, Tumor , Drug Resistance, Neoplasm
2.
World J Surg Oncol ; 20(1): 37, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177071

ABSTRACT

BACKGROUND: As reported, preclinical animal models differ greatly from the human body. The evaluation model may be the colossal obstacle for scientific research and anticancer drug development. Therefore, it is essential to propose efficient evaluation systems similar to clinical practice for cancer research. MAIN BODY: While it has emerged for decades, the development of patient-derived xenografts, patient-derived organoid and patient-derived cell used to be limited. As the requirements for anticancer drug evaluation increases, patient-derived models developed rapidly recently, which is widely applied in basic research, drug development, and clinical application and achieved remarkable progress. However, there still lack systematic comparison and summarize reports for patient-derived models. In the current review, the development, applications, strengths, and challenges of patient-derived models in cancer research were characterized. CONCLUSION: Patient-derived models are an indispensable approach for cancer research and human health.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Heterografts , Humans , Neoplasms/drug therapy , Organoids , Xenograft Model Antitumor Assays
3.
Hum Reprod ; 36(7): 1891-1906, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34059912

ABSTRACT

STUDY QUESTION: Does hypo-glycosylated human recombinant FSH (hFSH18/21) have greater in vivo bioactivity that drives follicle development in vivo compared to fully-glycosylated human recombinant FSH (hFSH24)? SUMMARY ANSWER: Compared with fully-glycosylated hFSH, hypo-glycosylated hFSH has greater bioactivity, enabling greater follicular health and growth in vivo, with enhanced transcriptional activity, greater activation of receptor tyrosine kinases (RTKs) and elevated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. WHAT IS KNOWN ALREADY: Glycosylation of FSH is necessary for FSH to effectively activate the FSH receptor (FSHR) and promote preantral follicular growth and formation of antral follicles. In vitro studies demonstrate that compared to fully-glycosylated recombinant human FSH, hypo-glycosylated FSH has greater activity in receptor binding studies, and more effectively stimulates the PKA pathway and steroidogenesis in human granulosa cells. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study evaluating the actions of purified recombinant human FSH glycoforms on parameters of follicular development, gene expression and cell signaling in immature postnatal day (PND) 17 female CD-1 mice. To stimulate follicle development in vivo, PND 17 female CD-1 mice (n = 8-10/group) were treated with PBS (150 µl), hFSH18/21 (1 µg/150 µl PBS) or hFSH24 (1 µg/150 µl PBS) by intraperitoneal injection (i.p.) twice daily (8:00 a.m. and 6:00 p.m.) for 2 days. Follicle numbers, serum anti-Müllerian hormone (AMH) and estradiol levels, and follicle health were quantified. PND 17 female CD-1 mice were also treated acutely (2 h) in vivo with PBS, hFSH18/21 (1 µg) or hFSH24 (1 µg) (n = 3-4/group). One ovary from each mouse was processed for RNA sequencing analysis and the other ovary processed for signal transduction analysis. An in vitro ovary culture system was used to confirm the relative signaling pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS: The purity of different recombinant hFSH glycoforms was analyzed using an automated western blot system. Follicle numbers were determined by counting serial sections of the mouse ovary. Real-time quantitative RT-PCR, western blot and immunofluorescence staining were used to determine growth and apoptosis markers related with follicle health. RNA sequencing and bioinformatics were used to identify pathways and processes associated with gene expression profiles induced by acute FSH glycoform treatment. Analysis of RTKs was used to determine potential FSH downstream signaling pathways in vivo. Western blot and in vitro ovarian culture system were used to validate the relative signaling pathways. MAIN RESULTS AND THE ROLE OF CHANCE: Our present study shows that both hypo- and fully-glycosylated recombinant human FSH can drive follicular growth in vivo. However, hFSH18/21 promoted development of significantly more large antral follicles compared to hFSH24 (P < 0.01). In addition, compared with hFSH24, hFSH18/21 also promoted greater indices of follicular health, as defined by lower BAX/BCL2 ratios and reduced cleaved Caspase 3. Following acute in vivo treatment with FSH glycoforms RNA-sequencing data revealed that both FSH glycoforms rapidly induced ovarian transcription in vivo, but hypo-glycosylated FSH more robustly stimulated Gαs and cAMP-mediated signaling and members of the AP-1 transcription factor complex. Moreover, hFSH18/21 treatment induced significantly greater activation of RTKs, PI3K/AKT and MAPK/ERK signaling compared to hFSH24. FSH-induced indices of follicle growth in vitro were blocked by inhibition of PI3K and MAPK. LARGE SCALE DATA: RNA sequencing of mouse ovaries. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION: The observations that hFSH glycoforms have different bioactivities in the present study employing a mouse model of follicle development should be verified in nonhuman primates. The gene expression studies reflect transcriptomes of whole ovaries. WIDER IMPLICATIONS OF THE FINDINGS: Commercially prepared recombinant human FSH used for ovarian stimulation in human ART is fully-glycosylated FSH. Our findings that hypo-glycosylated hFSH has greater bioactivity enabling greater follicular health and growth without exaggerated estradiol production in vivo, demonstrate the potential for its development for application in human ART. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by NIH 1P01 AG029531, NIH 1R01 HD 092263, VA I01 BX004272, and the Olson Center for Women's Health. JSD is the recipient of a VA Senior Research Career Scientist Award (1IK6 BX005797). This work was also partially supported by National Natural Science Foundation of China (No. 31872352). The authors declared there are no conflicts of interest.


Subject(s)
Follicle Stimulating Hormone, Human , Mitogen-Activated Protein Kinases , Ovarian Follicle/growth & development , Phosphatidylinositol 3-Kinases , Signal Transduction , Animals , China , Cross-Sectional Studies , Female , Glycosylation , Mice , Recombinant Proteins
4.
FASEB J ; 34(4): 5299-5316, 2020 04.
Article in English | MEDLINE | ID: mdl-32077149

ABSTRACT

The corpus luteum is an endocrine gland that synthesizes and secretes progesterone. Luteinizing hormone (LH) activates protein kinase A (PKA) signaling in luteal cells, increasing delivery of substrate to mitochondria for progesterone production. Mitochondria maintain a highly regulated equilibrium between fusion and fission in order to sustain biological function. Dynamin-related protein 1 (DRP1), is a key mediator of mitochondrial fission. The mechanism by which DRP1 is regulated in the ovary is largely unknown. We hypothesize that LH via PKA differentially regulates the phosphorylation of DRP1 on Ser616 and Ser637 in bovine luteal cells. In primary cultures of steroidogenic small luteal cells (SLCs), LH, and forskolin stimulated phosphorylation of DRP1 (Ser 637), and inhibited phosphorylation of DRP1 (Ser 616). Overexpression of a PKA inhibitor blocked the effects of LH and forskolin on DRP1 phosphorylation. In addition, LH decreased the association of DRP1 with the mitochondria. Genetic knockdown of the DRP1 mitochondria receptor, and a small molecule inhibitor of DRP1 increased basal and LH-induced progesterone production. Studies with a general Dynamin inhibitor and siRNA knockdown of DRP1 showed that DRP1 is required for optimal LH-induced progesterone biosynthesis. Taken together, the findings place DRP1 as an important target downstream of PKA in steroidogenic luteal cells.


Subject(s)
Corpus Luteum/metabolism , Dynamins/metabolism , Luteinizing Hormone/pharmacology , Mitochondrial Dynamics , Progesterone/biosynthesis , Animals , Cattle , Corpus Luteum/drug effects , Cyclic AMP/metabolism , Dynamins/genetics , Female , Phosphorylation , Signal Transduction
5.
J Cell Biochem ; 120(5): 8177-8184, 2019 May.
Article in English | MEDLINE | ID: mdl-30697802

ABSTRACT

Previous studies have reported that microRNAs function as key regulators in tumor development and progression. This study aims to investigate the functional effects of miR-503 expression in cervical cancer (CC) progression. We detected the expression of miR-503 in CC tissues and cell lines using quantitative real-time polymerase chain reaction. Synthesized miR-503 mimics or inhibitors were used to upregulate or downregulate the expression of miR-503 in HeLa or SiHa cells. Cell Counting Kit-8 and colony formation assay were used to detect the ability of cell proliferation. Furthermore, luciferase assay and Western blot were applied to confirm the target of miR-503 in CC cells. Here, we demonstrated that miR-503 expression was significantly downregulated in CC tissues, compared with adjacent normal tissues. miR-503 expression was significantly associated with tumor size and International Federation of Gynecology and Obstetrics stage. Furthermore, increasing miR-503 expression in CC cells dramatically inhibited cell proliferation, colony formation ability of CC. However, reducing miR-503 had reverse effects on these malignant behaviors. Moreover, we demonstrated that miR-503 inhibited cell proliferation by targeting AKT2 3'-untranslated region and affected its expression. Overexpression of AKT2 rescued the effects induced by miR-503 on cell proliferation. Therefore, our results indicated that miR-503 may serve as a tumor suppressor in CC and provide a potential value for CC treatment.

6.
Biol Reprod ; 101(5): 1001-1017, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31350850

ABSTRACT

Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although the exact extracellular signals that control the Hippo pathway are currently unknown, increasing evidence supports a critical role for the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and produce steroids and growth factors, which facilitate the growth of follicle and maturation of the oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and determined whether it was important for GC proliferation and estrogen production. Mammalian STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Furthermore, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining normal follicle development.


Subject(s)
Cell Proliferation/physiology , Transcription Factors/metabolism , Animals , Cattle , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Gene Knockdown Techniques , Granulosa Cells/metabolism , Photosensitizing Agents/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Verteporfin/pharmacology
7.
Molecules ; 24(7)2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30978940

ABSTRACT

Saikosaponin d (SSd) is one of the main active ingredients in Radix Bupleuri. In our study, network pharmacology databases and metabolomics were used in combination to explore the new targets and reveal the in-depth mechanism of SSd. A total of 35 potential targets were chosen through database searching (HIT and TCMID), literature mining, or chemical similarity predicting (Pubchem). Out of these obtained targets, Neuropilin-1 (NRP-1) was selected for further research based on the degree of molecular docking scores and novelty. Cell viability and wound healing assays demonstrated that SSd combined with NRP-1 knockdown could significantly enhance the damage of HepG2. Metabolomics analysis was then performed to explore the underlying mechanism. The overall difference between groups was quantitatively evaluated by the metabolite deregulation score (MDS). Results showed that NRP-1 knockdown exhibited the lowest MDS, which demonstrated that the metabolic profile experienced the slightest interference. However, SSd alone, or NRP-1 knockdown in combination with SSd, were both significantly influenced. Differential metabolites mainly involved short- or long-chain carnitines and phospholipids. Further metabolic pathway analysis revealed that disturbed lipid transportation and phospholipid metabolism probably contributed to the enhanced anti-hepatoma effect by NRP-1 knockdown in combination with SSd. Taken together, in this study, we provided possible interaction mechanisms between SSd and its predicted target NRP-1.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Neuropilin-1/genetics , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Survival/drug effects , Gene Knockdown Techniques , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Metabolic Networks and Pathways/drug effects , Metabolomics/methods , Molecular Docking Simulation , Molecular Targeted Therapy , Neuropilin-1/antagonists & inhibitors , Oleanolic Acid/pharmacology
8.
J Org Chem ; 83(19): 11905-11916, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30199250

ABSTRACT

With the aid of density functional theory (DFT) calculations, mechanistic investigations have been carried out for the nickel-catalyzed dehydrogenative cross-coupling reaction of benzaldehyde with benzyl alcohol in the presence of N-heterocyclic carbene (NHC) ligand. The overall Ni(0)/Ni(II) catalytic cycle consists of four basic steps: ligand exchange, oxidative addition, hydrogen transfer, and reductive elimination. Considerable interests are paid on detecting the transition state of the rate-determining step, with particular emphasis on the structural and electronic properties, together with clarifying the important roles of external oxidant and hydrogen acceptor. The hydrogen transfer process in the oxidative addition step is rate-determining in the whole catalytic cycle, which is accomplished by C-Ha (active Ha) activation without generating the high energy nickel hydride intermediate. Such process could be understood as the direct hydrogen transfer, instead of general concerted oxidative addition to low valent transition metal. The analysis of the bond distances, electron distributions, and orbital interactions highlights the direct hydrogen transfer mechanism. Furthermore, by exploring the influences from the electronic effect of different substrates on the reaction energy barriers, the  a,a,a-trifluoroacetophenone could accelerate the direct hydrogen transfer with low activate energy.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(3): 542-7, 2015 Jun.
Article in Zh | MEDLINE | ID: mdl-26485975

ABSTRACT

Multivariate time series problems widely exist in production and life in the society. Anomaly detection has provided people with a lot of valuable information in financial, hydrological, meteorological fields, and the research areas of earthquake, video surveillance, medicine and others. In order to quickly and efficiently find exceptions in time sequence so that it can be presented in front of people in an intuitive way, we in this study combined the Riemannian manifold with statistical process control charts, based on sliding window, with a description of the covariance matrix as the time sequence, to achieve the multivariate time series of anomaly detection and its visualization. We made MA analog data flow and abnormal electrocardiogram data from MIT-BIH as experimental objects, and verified the anomaly detection method. The results showed that the method was reasonable and effective.


Subject(s)
Data Interpretation, Statistical , Image Interpretation, Computer-Assisted , Pattern Recognition, Automated , Electrocardiography , Humans
10.
Reproduction ; 148(1): 21-31, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24686456

ABSTRACT

Recent studies have suggested that chemokines may mediate the luteolytic action of prostaglandin F2α (PGF). Our objective was to identify chemokines induced by PGF in vivo and to determine the effects of interleukin 8 (IL8) on specific luteal cell types in vitro. Mid-cycle cows were injected with saline or PGF, ovaries were removed after 0.5-4 h, and expression of chemokine was analyzed by qPCR. In vitro expression of IL8 was analyzed after PGF administration and with cell signaling inhibitors to determine the mechanism of PGF-induced chemokine expression. Purified neutrophils were analyzed for migration and activation in response to IL8 and PGF. Purified luteal cell types (steroidogenic, endothelial, and fibroblast cells) were used to identify which cells respond to chemokines. Neutrophils and peripheral blood mononuclear cells (PBMCs) were cocultured with steroidogenic cells to determine their effect on progesterone production. IL8, CXCL2, CCL2, and CCL8 transcripts were rapidly increased following PGF treatment in vivo. The stimulatory action of PGF on IL8 mRNA expression in vitro was prevented by inhibition of p38 and JNK signaling. IL8, but not PGF, TNF, or TGFB1, stimulated neutrophil migration. IL8 had no apparent action in purified luteal steroidogenic, endothelial, or fibroblast cells, but stimulated ERK phosphorylation in neutrophils. In coculture experiments neither IL8 nor activated neutrophils altered basal or LH-stimulated luteal cell progesterone synthesis. In contrast, activated PBMCs inhibited LH-stimulated progesterone synthesis from cultured luteal cells. These data implicate a complex cascade of events during luteolysis, involving chemokine signaling, neutrophil recruitment, and immune cell action within the corpus luteum.


Subject(s)
Corpus Luteum/metabolism , Interleukin-8/metabolism , Luteolysis , Progesterone/metabolism , Animals , Cattle , Cell Communication , Cells, Cultured , Chemotaxis , Coculture Techniques , Corpus Luteum/cytology , Corpus Luteum/drug effects , Corpus Luteum/immunology , Dinoprost/pharmacology , Estrous Cycle , Female , Gene Expression Regulation , Humans , Interleukin-8/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Luteolysis/drug effects , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Pregnancy , RNA, Messenger/metabolism , Signal Transduction , Time Factors
11.
iScience ; 27(3): 109241, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433909

ABSTRACT

The detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is crucial for understanding and managing various illnesses. In this research, Pt@g-C3N4 nanoparticles were synthesized via hydrothermal method and combined with N-doped carbon nanotubes (N-CNTs). The Pt@g-C3N4/N-CNTs-modified glassy carbon (GC) electrode was fabricated as an electrochemical sensor for the determination of AA, DA, and UA. The linear response range of AA, DA, and UA in the optimal condition was 100-3,000 µM, 1-100 µM, and 2-215 µM boasting a low detection limit (S/N = 3) of 29.44 µM (AA), 0.21 µM (UA), and 2.99 µM (DA), respectively. Additionally, the recoveries of AA, DA, and UA in serum sample were 100.4%-106.7%. These results corroborate the feasibility of the proposed method for the simultaneous, sensitive, and reliable detection of AA, DA, and UA. Our Pt@g-C3N4/N-CNTs/GC electrode can provide a potential strategy for disease diagnosis and health monitoring in clinical settings.

12.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794174

ABSTRACT

The involvement of the gut microbiota in anti-cancer treatment has gained increasing attention. Alterations to the structure and function of the gut bacteria are important factors in the development of cancer as well as the efficacy of chemotherapy. Recent studies have confirmed that the gut microbiota and related metabolites influence the pharmacological activity of chemotherapeutic agents through interactions with the immune system. This review aims to summarize the current knowledge of how malignant tumor and chemotherapy affect the gut microbiota, how the gut microbiota regulates host immune response, and how interactions between the gut microbiota and host immune response influence the efficacy of chemotherapy. Recent advances in strategies for increasing the efficiency of chemotherapy based on the gut microbiota are also described. Deciphering the complex homeostasis maintained by the gut microbiota and host immunity provides a solid scientific basis for bacterial intervention in chemotherapy.

13.
Int Immunopharmacol ; 130: 111786, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38447415

ABSTRACT

G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aß1-42). RNA-sequencing data analysis showed that Aß1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aß1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aß1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Nerve Tissue Proteins , Receptors, G-Protein-Coupled , Septum of Brain , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Transgenic , Up-Regulation , Nerve Tissue Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Septum of Brain/metabolism , Mice, Inbred C57BL
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124105, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38461560

ABSTRACT

This study investigated the potential ability of the fluorescent probe Ly-CHO to detect formaldehyde (FA) in living cells and tumor-bearing mice. Ly-CHO exhibited great selectivity, excellent sensitivity, and rapid response to FA, making it a valuable tool for tracking FA concentration changes. The probe was also found to target lysosomes specifically. Furthermore, Ly-CHO showed an obvious fluorescence increase in endogenous CHO detection after adding tetrahydrogen folic acid (THFA). This study validated Ly-CHO's possibility for FA imaging in vivo, with potential applications in understanding formaldehyde-related diseases.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Animals , Mice , Lysosomes , HeLa Cells , Formaldehyde , Optical Imaging , Water
15.
Photodiagnosis Photodyn Ther ; 42: 103642, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37271488

ABSTRACT

Sono-photodynamic therapy (SPDT) is an oxidative stress-dependant antitumour treatment modality. Due to the hypoxic tumour microenvironment, the antitumour effect of SPDT is limited. In this study, we developed lipid vesicles to transport a photosensitizer (chlorin e6, Ce6) and oxygen into tumours to promote SPDT efficiency on triple-negative breast cancer in vitro and in vivo. The results showed that compared with the same concentration of free Ce6, Lipo-Ce6 produced a higher singlet oxygen level under light irradiation. Cellular Lipo-Ce6 accumulation was 4-fold higher than that of free Ce6. The cytotoxicity on 4T1 cells caused by Lipo-Ce6-SPDT was significantly stronger than that caused by free Ce6-SPDT, and oxygen microbubbles (O2MB) further enhanced the cytotoxicity of Lipo-Ce6-SPDT under hypoxic conditions. Cellular ROS production in the Lipo-Ce6-SPDT+O2MB group was approximately 2.5-fold higher than that in the Lipo-Ce6-SPDT+C3F8MB group. Furthermore, O2MB rapidly relieved 4T1 subcutaneous xenograft hypoxia conditions under ultrasound exposure and significantly improved the antitumour activity of SPDT in vivo. These results indicate that the combination of O2MB and a high-activity liposome photosensitizer can significantly enhance the antitumour efficiency of SPDT for hypoxic tumours.


Subject(s)
Chlorophyllides , Photochemotherapy , Porphyrins , Triple Negative Breast Neoplasms , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Tumor Hypoxia , Cell Line, Tumor , Microbubbles , Triple Negative Breast Neoplasms/drug therapy , Oxygen , Porphyrins/pharmacology , Tumor Microenvironment
16.
Sci Total Environ ; 892: 164748, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37308018

ABSTRACT

Bisphenol P (BPP) and bisphenol M (BPM) are increasing in our living environment as analogues of bisphenol A (BPA), but little is known about their biological effect. In this study, we investigated the effects of low to medium dose exposure of BPP and BPM on triple negative breast cancer (TNBC). We found that BPP and BPM exposure didn't affect proliferation of TNBC cell lines MDA-MB-231 and 4 T1, but significantly promoted cells migration and invasion. The effect of BPP and BPM on promoting TNBC metastasis was further confirmed in mouse models. Low concentrations of BPP and BPM significantly increased the expression of epithelial-mesenchymal transition (EMT) marker and related proteins such as N-cadherin, MMP-9, MMP-2 and Snail, and also enhanced phosphorylation of AKT both in vitro and in vivo. When PI3K inhibitor wortmannin was applied to specifically inhibit phosphorylation of AKT, the expression of target genes markedly decreased, and the TNBC metastasis induced by low-concentration BPP and BPM were reversed. In conclusion, these results showed that PI3K/AKT signaling regulate BPP/BPM-induced metastasis of TNBC by triggering EMT. This study provides insights into the effects and the potential mechanisms of BPP and BPM on TNBC, raising concerns about the risk of using these two bisphenols as the alternative of BPA.


Subject(s)
Proto-Oncogene Proteins c-akt , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation
17.
Anal Chim Acta ; 1193: 339399, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35058011

ABSTRACT

Modified metabolites play significant roles in disease occurrence, progression and diagnosis. Sensitive and accurate analytical methods for the quantification of these metabolites are therefore of great importance. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous measurement of 13 pairs of prototypes and their modified forms covering nucleobases, nucleosides and amino acids. In order to improve the quantification sensitivity and accuracy, two structure analogs named N-dimethyl-amino naphthalene-1-sulfonyl chloride (Dns-Cl) and N-diethyl-amino naphthalene-1-sulfonyl chloride (Dens-Cl) were introduced for twins labeling derivatization. Dns-labeling was utilized to react with target analytes while the Dens-labeling of standard compounds provided one-to-one internal standards. With the introduce of naphthalene and easily ionizable moiety tertiary ammonium, chromatography retention and separation of these polar metabolites were notably improved on C18 columns and the detection sensitivity was increased up to 400 folds. The method is sensitive with the lower limit of quantification (LLOQ) values of 0.002-0.5 µg/mL. Comparisons of the performance of twins labeling derivatization and traditional chemical isotope labeling (CIL) derivatization verified the ability of our method in the absolute quantification. The established method was applied to human lung adenocarcinoma cell line A549 and its cisplatin resistant derivative A549/DDP. Significant shifts in 12 metabolites as well as 9 modified-to-prototypical ratios in A549/DDP were observed, demonstrating the utility of our method and the potential role of modified metabolites in mediating anticancer drug resistance. The method can be easily extended to determine other types of modified metabolites in various biological matrices, which will greatly expand our knowledge on these metabolites.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Amines , Chromatography, Liquid , Humans , Isotope Labeling
18.
Front Nutr ; 9: 1014414, 2022.
Article in English | MEDLINE | ID: mdl-36386893

ABSTRACT

As a medicine-food homology (MFH) plant, golden-flowered tea (Camellia nitidissima Chi, CNC) has many different pharmacologic activities and is known as "the queen of the tea family" and "the Panda of the Plant world". Several studies have revealed the pharmacologic effects of CNC crude extract, including anti-tumor, anti-oxidative and hepatoprotective activity. However, there are few studies on the anti-tumor active fractions and components of CNC, yet the underlying mechanism has not been investigated. Thus, we sought to verify the anti-non-small cell lung cancer (NSCLC) effects of four active fractions of CNC. Firstly, we determined the pharmacodynamic material basis of the four active fractions of CNC (Camellia. leave. saponins, Camellia. leave. polyphenols, Camellia. flower. saponins, Camellia. flower. polyphenols) by UPLC-Q-TOF-MS/MS and confirmed the differences in their specific compound contents. Then, MTT, colony formation assay and EdU incorporation assay confirmed that all fractions of CNC exhibit significant inhibitory on NSCLC, especially the Camellia. leave. saponins (CLS) fraction on EGFR mutated NSCLC cell lines. Moreover, transcriptome analysis revealed that the inhibition of NSCLC cell growth by CLS may be via three pathways, including "Cytokine-cytokine receptor interaction," "PI3K-Akt signaling pathway" and "MAPK signaling pathway." Subsequently, quantitative real-time PCR (RT-qPCR) and Western blot (WB) revealed TGFB2, INHBB, PIK3R3, ITGB8, TrkB and CACNA1D as the critical targets for the anti-tumor effects of CLS in vitro. Finally, the xenograft models confirmed that CLS treatment effectively suppressed tumor growth, and the key targets were also verified in vivo. These observations suggest that golden-flowered tea could be developed as a functional tea drink with anti-cancer ability, providing an essential molecular mechanism foundation for MFH medicine treating NSCLC.

19.
Endocrinology ; 162(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-33502468

ABSTRACT

Luteinizing hormone (LH) via protein kinase A (PKA) triggers ovulation and formation of the corpus luteum, which arises from the differentiation of follicular granulosa and theca cells into large and small luteal cells, respectively. The small and large luteal cells produce progesterone, a steroid hormone required for establishment and maintenance of pregnancy. We recently reported on the importance of hormone-sensitive lipase (HSL, also known as LIPE) and lipid droplets for appropriate secretory function of the corpus luteum. These lipid-rich intracellular organelles store cholesteryl esters, which can be hydrolyzed by HSL to provide cholesterol, the main substrate necessary for progesterone synthesis. In the present study, we analyzed dynamic posttranslational modifications of HSL mediated by PKA and AMP-activated protein kinase (AMPK) as well as their effects on steroidogenesis in luteal cells. Our results revealed that AMPK acutely inhibits the stimulatory effects of LH/PKA on progesterone production without reducing levels of STAR, CYP11A1, and HSD3B proteins. Exogenous cholesterol reversed the negative effects of AMPK on LH-stimulated steroidogenesis, suggesting that AMPK regulates cholesterol availability in luteal cells. AMPK evoked inhibitory phosphorylation of HSL (Ser565). In contrast, LH/PKA decreased phosphorylation of AMPK at Thr172, a residue required for its activation. Additionally, LH/PKA increased phosphorylation of HSL at Ser563, which is crucial for enzyme activation, and decreased inhibitory phosphorylation of HSL at Ser565. The findings indicate that LH and AMPK exert opposite posttranslational modifications of HSL, presumptively regulating cholesterol availability for steroidogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Luteal Cells/cytology , Luteal Cells/enzymology , Progesterone/metabolism , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/genetics , Amino Acid Motifs , Animals , Cattle , Cholesterol/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Enzyme Activation , Female , Luteal Cells/metabolism , Luteinizing Hormone/metabolism , Phosphorylation , Signal Transduction
20.
J Breast Cancer ; 24(2): 153-163, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33818020

ABSTRACT

PURPOSE: This study aimed to investigate the changes in microRNA-130a (miR-130a) and its correlation with cardiotoxicity during epirubicin/cyclophosphamide followed by docetaxel plus trastuzumab (EC-D+T) adjuvant chemotherapy in human epidermal growth factor receptor-2-positive (HER2⁺) breast cancer patients. METHODS: A total of 72 HER2⁺ breast cancer patients who underwent resection and were scheduled to receive EC-D+T adjuvant therapy were consecutively enrolled. The expression of miR-130a and cardiotoxicity (defined as any of the following situations: 1) absolute decline of left ventricular ejection fraction (LVEF) ≥ 10% and LVEF < 53%; 2) heart failure; 3) acute coronary artery syndromes; and 4) fatal arrhythmia) were assessed every 3 months throughout the 15-month EC-D+T treatment. RESULTS: The accumulating cardiotoxicity rate was 12 (16.7%), of which the incidence of heart failure, acute coronary syndrome, life-threatening arrhythmias, ΔLVEF ≥ 10%, and LVEF < 53% was 0 (0.0%), 1 (1.4%), 0 (0.0%), and 12 (16.7%), respectively. Baseline miR-130a expression was negatively correlated with LVEF (%) and positively correlated with cardiac troponin I. The expression of miR-130a gradually increased in both cardiotoxicity and non-cardiotoxicity patients during EC-D+T treatment, while the increment of miR-130a was more obvious in cardiotoxicity patients compared with non-cardiotoxicity patients. Further logistic regression and receiver operating characteristic curve analysis indicated that miR-130a was an independent predictive factor for increased cardiotoxicity risk. CONCLUSION: MiR-130a increases constantly and predicts high cardiotoxicity risk during EC-D+T adjuvant chemotherapy in HER2⁺ breast cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL