Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Inorg Chem ; 63(1): 852-859, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38112263

ABSTRACT

The first compound of cadmium-borate silicate Cd8(BO3)4SiO4, crystallizing in space group P42/n (no. 86), has been successfully synthesized by the conventional high-temperature solution method and melts congruently. The zero-dimensional anionic groups of Cd8(BO3)4SiO4 are isolated [BO3] triangles and isolated [SiO4] tetrahedra which are filled in the framework formed by [CdO6] polyhedra. It has a moderate birefringence (Δn = 0.053 at 546 nm), which is measured by experiment and evaluated by first-principles calculations; meanwhile, the source of birefringence is revealed through the response electronic distribution anisotropy method. The UV-vis-NIR diffuse reflectance spectrum indicates that Cd8(BO3)4SiO4 possesses a wide optical transparency range, with a UV cutoff edge at about 254 nm. This work enriches the structure chemistry of borate silicates, and we discussed the possible methods for the exploration and synthesis of novel optical crystals possessing zero-dimensional anionic groups in the borate silicate system.

2.
Inorg Chem ; 63(10): 4783-4789, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38412503

ABSTRACT

A mild hydrothermal method was employed to successfully synthesize two new sulfate fluorides, namely, AYSO4F2 (A = K, Rb). They are isomorphic, and both contain [YO4F4] polyhedra and [SO4] tetrahedra in the structure. Theoretical calculations and experimental tests show that AYSO4F2 (A = K, Rb) have large band gaps (7.79 and 7.82 eV) and moderate birefringence (0.015 and 0.02 @ 546.1 nm), with significantly enhanced birefringence and band gaps as compared to that of the single alkali metal sulfates A2SO4 (A = K, Rb). Furthermore, theoretical calculations show that [YO4F4] polyhedra are the main reason for the band gap and birefringence enhancement. This work contributes to the advancement of structural chemistry in the field of rare-earth sulfates, offering a novel approach for the design of sulfates characterized by large birefringence.

3.
Chemistry ; 29(41): e202300743, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37133248

ABSTRACT

Two new tin(II) phosphates, SnII SnIV (PO4 )2 and SrSn(PO4 )PO2 (OH)2 , were synthesized by the high-temperature solution method and hydrothermal method, respectively. Theoretical study indicates that by introducing tin(II) with stereochemical activity lone pairs (SCALP) in metal phosphates, the birefringence was enhanced, 0.048@1064 nm for SnII SnIV (PO4 )2 and 0.080@1064 nm for SrSn(PO4 )PO2 (OH)2 .

4.
Inorg Chem ; 62(23): 9209-9216, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37257153

ABSTRACT

Borates provide an excellent platform for investigating the optical nonlinearity and linearity of crystals as photoelectric functional materials. In our work, borate derivatives with isolated [B3O3] six-membered rings as structural features are the preferred system due to their simple functional units and excellent properties. Herein, by utilizing the target-oriented synthesis, a series of borate derivatives, A2[B3O3F4(OH)] (A= NH4, Rb, Cs) (ABOFH), K2.3Cs0.7B3O3F6 (KCsBOF), and Cs3[B3O3(OH)3]Cl3 (CsBOHCl), with novel heteroanionic groups containing [BOxF4-x] (x = 0-3) and/or [BO2(OH)] units were obtained. ABOFH, KCsBOF, and CsBOHCl construct different two-dimensional pesudolayers featuring [B3O3F4(OH)], [B3O3F6], and [B3O3(OH)3] units, respectively. Also, the optical properties and the arrangement information of these anionic groups were studied. Among the total five compounds, (NH4)2[B3O3F4(OH)] and Cs3[B3O3(OH)3]Cl3 with enlarged birefringence and sufficient band gaps were screened out as promising birefringent crystals due to the optimally aligned configuration of birefringence-active heteroanionic units. The successful results of target-oriented synthesis indicate a more profound conclusion that the borate system now has more diversified structural chemistry, and an effective strategy was proposed to modify the arrangement and species of anionic units to optimize the performance of optical crystals.

5.
Inorg Chem ; 62(33): 13608-13614, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37551151

ABSTRACT

Currently, short-wavelength nonlinear optical materials are urgently needed. Through substituting homoleptic [LiO4] in centrosymmetric LiRbSO4 with heteroleptic [LiO3Cl] tetrahedra, an acentric sulfate chloride, Li2RbSO4Cl, was designed and synthesized by the high-temperature melting method. Li2RbSO4Cl shows a relatively short ultraviolet absorption edge (<200 nm) among newly reported sulfate chlorides. Millimeter-sized crystals were grown due to the congruent melting behavior and high thermal stability of the compound.

6.
Inorg Chem ; 62(49): 20340-20348, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37997389

ABSTRACT

The vanadate (VO) polyhedron offers a compelling avenue for exploring birefringent materials within the infrared frequency range. Among many potential building blocks, the implementation of [VO3]∞ chains demonstrated great potential as effective birefringent functional units. In this article, we successfully synthesized the Li0.8Na0.2CsV2O6·H2O compound, which exhibits a remarkable birefringence of 0.134 at 546.1 nm, as confirmed by the experiment. Notably, the introduction of alkali metals in this compound led to a significantly shorter cutoff edge at 340 nm. Through a comprehensive investigation, Li0.8Na0.2CsV2O6·H2O has the shortest UV cutoff edge among all vanadates, whose birefringences are larger than 0.1, to the best of our best knowledge. This finding underscores the application potential of this novel material as a birefringent crystal.

7.
Inorg Chem ; 62(49): 20430-20438, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37992320

ABSTRACT

Borophosphates have become promising candidates for ultraviolet or deep-ultraviolet functional crystals. Through high-temperature solution method, four new borophosphates, K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH), were acquired successfully. Single crystal X-ray diffraction suggests that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) belong to the noncentrosymmetric space group, while P21/c-(NH4)2B2P3O11(OH) belongs to the centrosymmetric compound. It is worth mentioning that K2B2P2O9, (NH4)2BP2O7(OH), and K2BP2O7(OH) present the new fundamental building blocks [B2P2O11], [BP2O10H], and [BP2O9(OH)], respectively, as far as we know. Compared with K2B2P2O9, (NH4)2BP2O7(OH), K2BP2O7(OH), and P21/c-(NH4)2B2P3O11(OH) exhibit a larger optical anisotropy, further confirming the positive effect of hydroxyl groups on birefringence. UV-vis-NIR diffuse reflectance spectra display that K2B2P2O9 and (NH4)2BP2O7(OH) have short UV cutoff edges. Meanwhile, theoretical calculations were conducted to comprehend their optical properties and electronic structures.

8.
Angew Chem Int Ed Engl ; 62(22): e202303711, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36988004

ABSTRACT

Birefringent crystals are requisite optical devices in laser and modern opto-electronic fields. Development of excellent birefringent materials is still challenging. Herein, the linear or chain-like [Sx ] (x=2-6) species were theoretically proved to be the origin of the large birefringence, and could be regarded as birefringent genes. Besides, the metal polysulfide family was first proposed to be rich birefringent materials source, among which Cs2 S6 realizes giant birefringence 0.58@1064 nm together with a wide band gap of 1.70 eV (based on the generalized gradient approximation). Moreover, the first dual-anion group polysulfide Na4 Ba3 (S2 )4 S3 was obtained, showing wide infrared transmission range (0.5-6.2 µm), wide band gap (2.3 eV), and large birefringence (0.37 at 1064 nm). This work provides a new guiding thought for exploring large birefringence crystals in the future.

9.
Angew Chem Int Ed Engl ; 62(26): e202302025, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-36912564

ABSTRACT

The combination of SnII or SbIII with π, non-π-conjugated units has produced birefringent crystals with birefringence ranging from 0.005 to 0.468@1064 nm. It is proven that introducing SnII or SbIII into crystals is a feasible strategy to enlarge the birefringence, which not only promotes the miniaturization of fabricated devices, but also effectively modulates polarized light. Herein, recently discovered SnII , SbIII -based birefringent crystals with birefringence investigated are summarized, including their crystal structure and optical properties, especially birefringence. This review also presents the influence of SnII , SbIII with stereochemically active lone pair on the optical anisotropy. We hope that this work provides a clear perspective on the crystal chemistry of SnII , SbIII -based optical functional crystals and promotes the development of new birefringent crystals with large optical anisotropy.


Subject(s)
Birefringence , Anisotropy
10.
Angew Chem Int Ed Engl ; 62(28): e202304238, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37173869

ABSTRACT

It is important to establish and clarify the relationship between stereochemically active lone pairs and birefringence, since it is one of the significantly effective routes to explore birefringent crystals by introducing Sn-centered polyhedra with stereochemically active lone pairs. Herein, four tin(II)-based ternary halides A3 SnCl5 and ASn2 Cl5 (A=NH4 and Rb) have been synthesized successfully. The experimental birefringence of Rb3 SnCl5 and RbSn2 Cl5 is larger than or equal to 0.046 and 0.123@546 nm, respectively. Through investigating the alkali or alkaline-earth metal tin(II)-based ternary halides, the structure-performance relationship has been concluded between stereochemically active lone pairs and optical anisotropy. It is beneficial to the analysis and prediction of birefringence in tin-based halides and provides a guide for exploring tin(II)-based optoelectronic functional materials.

11.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35565985

ABSTRACT

The chromatographic fingerprint of 14 batches of Artemisia rupestris L. samples were established in this study. The constituents of ten components in Artemisia rupestris L. were determined using quantitative analysis of multi-components by single marker (QAMS) and the external standard method (ESM). Due to their stability and accessibility, chlorogenic acid and linarin were used as references to calculate the relative correction factors (RCFs) of apigenin-C-6,8-pentoside-hexoside, apigenin-C-6,8-di-pentoside, luteolin, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, chrysosplenetin B, and sbsinthin, based on high-performance liquid chromatography (HPLC). The value calculated by QAMS was consistent with that of the ESM, and the reproducibility of RCFs was found to be reliable. In conclusion, simultaneous determination of the ten components by the QAMS method and chromatographic fingerprint analysis were feasible and accurate in evaluating the quality of Artemisia rupestris L. and can be used as reference in traditional Chinese medicine quality control.


Subject(s)
Artemisia , Drugs, Chinese Herbal , Apigenin/analysis , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Reproducibility of Results
12.
Molecules ; 26(20)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34684711

ABSTRACT

Elastic semiconductors are becoming more and more important to the development of flexible wearable electronic devices, which can be prepared by structural engineering design, blending, and the intrinsic elastification of organic semiconductors (intrinsically elastic organic semiconductor, IEOS). Compared with the elastic semiconductors prepared by structural engineering and blending, the IEOS prepared by organic synthesis has attracted numerous attentions for its solution processability and highly tunable chemical structures. For IEOSs, reasonable designs of synthetic routes and methods are the basis for realizing good mechanical and electrical properties. This brief review begins with a concise introduction of elastic semiconductors, then follows with several synthetic methods of IEOSs, and concludes the characteristics of each method, which provides guidance for the synthesis of IEOSs in the future. Furthermore, the properties of IEOSs are involved from the aspects of electrical, mechanical properties, and the applications of the IEOSs in elastic electronic devices. Finally, the challenge and an outlook which IEOSs are facing are presented in conclusion.

13.
J Am Chem Soc ; 139(31): 10645-10648, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28726399

ABSTRACT

Nonlinear optical materials are essential for the development of solid-state lasers. KBe2BO3F2 (KBBF) is a unique nonlinear optical material for generation of deep-ultraviolet coherent light; however, its industrial application is limited. Here, we report a new material NH4B4O6F, which exhibits a wide deep-ultraviolet transparent range and suitable birefringence that enables frequency doubling below 200 nm. NH4B4O6F possesses large nonlinear coefficients about 2.5 times that of KBBF. In addition, it is easy to grow bulk crystals and does not contain toxic elements.

14.
J Am Chem Soc ; 137(26): 8360-3, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26120874

ABSTRACT

Mid-IR nonlinear optical (NLO) materials are of great importance in modern laser frequency conversion technology and optical parametric oscillator processes. However, the commercially available IR NLO crystals (e.g., AgGaQ2 (Q = S, Se) and ZnGeP2) suffer from two obstacles, low laser damage thresholds (LDTs) and the difficulty of obtaining high-quality crystals, both of which seriously hinder their applications. The introduction of Cl, an element with a large electronegativity, and Pb, a relatively heavy element to promote the optical properties, affords an oxide-based IR NLO material, Pb17O8Cl18 (POC). High-quality POC single crystals with sizes of up to 7 mm × 2 mm × 2 mm have been grown in an open system. Additionally, POC exhibits a large LDT of 408 MW/cm(2), 12.8 times that of AgGaS2. POC also exhibits an excellent second harmonic generation response: 2 times that of AgGaS2, the benchmark IR NLO crystal at 2090 nm, and 4 times that of KDP, the standard UV NLO crystal at 1064 nm. Thus, we believe that POC is a promising IR NLO material.

15.
Apoptosis ; 20(6): 787-95, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25772545

ABSTRACT

Dithiocarbamates (DTCs) exhibit a broad spectrum of antitumor activities, however, their molecular mechanisms of antitumor have not yet been elucidated. Previously, we have synthesized a series of novel dithiocarbamate derivatives. These DTCs were examined for cytotoxic activities against five human cancer cell lines. In this study, one of dithiocarbamate (DTC1) with higher potential for HeLa cells was chosen to investigate molecular mechanisms for its anti-tumor activities. DTC1 could inhibit proliferation, and highly induce apoptosis in HeLa cells by activating caspase-3, -6 and -9; moreover, activities of caspase-3, -6 and -9 were inhibited by pan-caspase inhibitor, Z-VAD-FMK. Furthermore, DTC1 decreased the levels of Bcl-2 and Bcl-xL, and increased expression of cytosol cytochrome c, Bak, Bax and p53 in a time-dependent manner but had no effect on the level of Rb. It was shown that DTC1 induced HeLa cells apoptosis through a p53-dependent pathway as tested by the wild type p53 inhibitor, pifithrin-α. Additionally, the relative expression of E6 and E7 were evaluated in HPV18-positive (HeLa cells) by real-time PCR and western blotting. The results firstly demonstrated that DTC1 suppressed both expression of E6 mRNA and E6 oncoprotein, but had no effect on the expression of E7 mRNA and protein in HPV18. Our results suggested that DTC1 may serve as novel chemotherapeutic agents in the treatment of cervical cancer and potential anti-HPV virus candidates that merit further studies.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , DNA-Binding Proteins/metabolism , Ethylenebis(dithiocarbamates)/pharmacology , Oncogene Proteins, Viral/metabolism , Amino Acid Chloromethyl Ketones/metabolism , Antineoplastic Agents/chemistry , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Caspase 6/metabolism , Caspase 9/metabolism , Caspase Inhibitors/metabolism , Cell Proliferation/drug effects , Cytochromes c/metabolism , Ethylenebis(dithiocarbamates)/chemistry , HeLa Cells , Humans , Papillomavirus E7 Proteins/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
16.
J Am Chem Soc ; 136(4): 1264-7, 2014 Jan 29.
Article in English | MEDLINE | ID: mdl-24393068

ABSTRACT

Nonlinear optical (NLO) crystals are essential materials for generation of coherent UV light in solid state lasers. KBBF is the only material that can achieve coherent light below 200 nm by direct second harmonic generation (SHG). However, its strong layer habits and the high toxicity of the beryllium oxide powders required for synthesis limit its application. By substituting Be with Zn and connecting adjacent [Zn2BO3O2]∞ layers by B3O6 groups, a new UV nonlinear optical material, Cs3Zn6B9O21, was synthesized. It overcomes the processing limitations of KBBF and exhibits the largest SHG response in the KBBF family.

17.
Virol J ; 11: 227, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25548009

ABSTRACT

BACKGROUND: The mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) signaling pathway is involved in viral life cycle. However, the effect of MEK/ERK pathway in enterovirus 71(EV71)-infected immature dendritic cells (iDCs) is still unclear. METHODS: Human peripheral blood mononuclear cells (PBMCs) were isolated and induced to generate iDCs. Unifected iDCs and EV71-infected iDCs with a multiplicity of infection (MOI = 5) were analyzed by flow cytometry. Differential gene expressions of MEK/ERK signaling pathway molecules in EV71-infected iDCs were performed by PCR arrays. The phosphorylation of MEK/ERK pathway molecules in EV71-infected iDCs preincubated without or with U0126 (20 µM) at indicated times was detected by Western blot. The concentrations of IL-1α, IL-2, IL-6, IL-12, TNF-α, IFN-α1, IFN-ß and IFN-γ in culture supernatant were analyzed by the luminex fluorescent technique. RESULTS: When iDCs were infected with EV71 for 24 h, the percentage of CD80, CD83, CD86 and HLA-DR expressed on iDCs significantly increased. PCR arrays showed that gene expressions of molecules in MEK/ERK signaling pathway were remarkably upregulated in EV71-infected iDCs. EV71 infection activated both MEK1/2 and ERK1/2, which phosphorylated their downstream transcription factor c-Fos, c-Jun, c-myc and Elk1. Importantly, the treatment of U0126 significantly inhibited MEK/ERK signaling pathway molecules and severely impaired virus replication., Additionally, EV71 infection promoted the expression of son of sevenless (SOS1) and increased the secretion of IL-1α, IL-2, IL-6, IL-12, TNF-α,IFN-ß and IFN-γ. Furthermore,the release of IL-1α, IL-2,IL-6 and TNF-α could be effectively suppressed by inhibitor U0126. CONCLUSIONS: Our data suggest that the MEK/ERK signaling pathway plays an important role in EV71-infected iDCs and these molecules may be potential targets for the development of new anti-EV71 drugs.


Subject(s)
Dendritic Cells/virology , Enterovirus A, Human/physiology , Host-Pathogen Interactions , MAP Kinase Signaling System , Virus Replication , Blotting, Western , Cells, Cultured , Cytokines/metabolism , Gene Expression Profiling , Humans , Luminescent Measurements , Phosphorylation , Polymerase Chain Reaction , Protein Processing, Post-Translational
18.
Dalton Trans ; 53(3): 866-871, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38099922

ABSTRACT

Designing wide-bandgap chalcogenides is one of the most important ways of obtaining high-performance infrared (IR) functional materials. In this work, two Mg-based metal thiophosphates, namely Na6Mg3P4S16 (NMPS) and RbMg2PS4Cl2 (RMPSC), were successfully obtained by introducing [MgS6] and [MgSxCl6-x] octahedra into thiophosphates. In addition, their crystal structures were determined, a first for Mg-containing [PS4]-based thiophosphates to the best of our knowledge. Their bandgaps were investigated in theoretical ways and verified by taking experimental measurements, and determined to be 3.80 eV for NMPS and 3.93 eV for RMPSC, values greater than those of the other investigated thiophosphate halides. The wide bandgaps of NMPS and RMPSC were attributed, based on theoretical calculations, to the [MgSxCl6-x] (x = 0-6) octahedron.

19.
J Am Chem Soc ; 135(11): 4215-8, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23448539

ABSTRACT

The generation of intense coherent deep-UV light from nonlinear optical materials is crucial to applications ranging from semiconductor photolithography and laser micromachining to photochemical synthesis. However, few materials with large second harmonic generation (SHG) and a short UV-cutoff edge are effective down to 200 nm. A notable exception is KBe2BO3F2, which is obtained from a solid-state reaction of highly toxic beryllium oxide powders. We designed and synthesized a benign polar material, Ba4B11O20F, that satisfies these requirements and exhibits the largest SHG response in known borates containing neither lone-pair-active anions nor second-order Jahn-Teller-active transition metals. We developed a microscopic model to explain the enhancement, which is unexpected on the basis of conventional anionic group theory arguments. Crystal engineering of atomic displacements along the polar axis, which are difficult to attribute to or identify within unique anionic moieties, and greater cation polarizabilities are critical to the design of next-generation SHG materials.

20.
ACS Omega ; 8(23): 21172-21181, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332783

ABSTRACT

Three polyborates, namely, LiNa11B28O48, Li1.45Na7.55B21O36, and Li2Na4Ca7Sr2B13O27F9, were synthesized via the high-temperature solution method. All of them feature high-symmetry [B12O24] units, yet their anion groups exhibit distinct dimensions. LiNa11B28O48 features a three-dimensional anionic structure of 3[B28O48]∞ framework, which is composed of three units: [B12O24], [B15O30], and [BO3]. Li1.45Na7.55B21O36 possesses a one-dimensional anionic structure of 1[B21O36]∞ chain consisting of [B12O24] and [B9O18] units. The anionic structure of Li2Na4Ca7Sr2B13O27F9 is composed of two zero-dimensional isolated units, namely, [B12O24] and [BO3]. The novel FBBs [B15O30] and [B21O39] are present in LiNa11B28O48 and Li1.45Na7.55B21O36, respectively. The anionic groups in these compounds exhibit a high degree of polymerization, thereby augmenting the structural diversity of borates. And the crystal structure, synthesis, thermal stability, and optical properties were meticulously discussed to guide the synthesis and characterization of novel polyborates.

SELECTION OF CITATIONS
SEARCH DETAIL