Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 184
Filter
1.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474368

ABSTRACT

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastrointestinal Microbiome/drug effects , Host Microbial Interactions/drug effects , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Agmatine/metabolism , Animals , Caenorhabditis elegans/microbiology , Cyclic AMP Receptor Protein , Escherichia coli/drug effects , Escherichia coli/genetics , Humans , Hypoglycemic Agents/pharmacology , Lipid Metabolism/drug effects , Longevity/drug effects , Metformin/pharmacology , Nutrients/metabolism
2.
Cell ; 154(2): 430-41, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23870130

ABSTRACT

NAD(+) is an important cofactor regulating metabolic homeostasis and a rate-limiting substrate for sirtuin deacylases. We show that NAD(+) levels are reduced in aged mice and Caenorhabditis elegans and that decreasing NAD(+) levels results in a further reduction in worm lifespan. Conversely, genetic or pharmacological restoration of NAD(+) prevents age-associated metabolic decline and promotes longevity in worms. These effects are dependent upon the protein deacetylase sir-2.1 and involve the induction of mitonuclear protein imbalance as well as activation of stress signaling via the mitochondrial unfolded protein response (UPR(mt)) and the nuclear translocation and activation of FOXO transcription factor DAF-16. Our data suggest that augmenting mitochondrial stress signaling through the modulation of NAD(+) levels may be a target to improve mitochondrial function and prevent or treat age-associated decline.


Subject(s)
Forkhead Transcription Factors/metabolism , Longevity , Mitochondria/metabolism , NAD/metabolism , Signal Transduction , Unfolded Protein Response , Aging , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Hepatocytes/metabolism , Mice , Poly(ADP-ribose) Polymerase Inhibitors , Reactive Oxygen Species/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Transcription Factors/metabolism
3.
Cell ; 150(6): 1287-99, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22939713

ABSTRACT

Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.


Subject(s)
Disease Models, Animal , Metabolic Diseases/genetics , Mice/genetics , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/genetics , Animals , Crosses, Genetic , Female , Homeostasis , Humans , Hypophosphatasia/genetics , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Polymorphism, Genetic , Quantitative Trait Loci , Reference Standards , Vitamin B 6/metabolism
4.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38372965

ABSTRACT

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Subject(s)
Cardiomyopathies , Congenital Bone Marrow Failure Syndromes , Lipid Metabolism, Inborn Errors , Lipidomics , Mitochondrial Diseases , Mitochondrial Myopathies , Mitochondrial Trifunctional Protein/deficiency , Muscular Diseases , Nervous System Diseases , Rhabdomyolysis , Humans , Mitochondrial Diseases/diagnosis , Carnitine , Cysteamine , Lipids
5.
Cell ; 142(1): 9-14, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20603007

ABSTRACT

Molecular and cellular networks implicated in aging depend on a multitude of proteins that collectively mount adaptive and contingent metabolic responses to environmental challenges. Here, we discuss the intimate links between metabolic regulation and longevity and outline new approaches for analyzing and manipulating such links to promote human health span.


Subject(s)
Aging/metabolism , Amino Acids, Essential/metabolism , Longevity , Metabolic Networks and Pathways , Methionine/metabolism , Aging/genetics , Animals , Humans
6.
J Lipid Res ; 65(6): 100567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795862

ABSTRACT

Lipids play pivotal roles in an extensive range of metabolic and physiological processes. In recent years, the convergence of trapped ion mobility spectrometry and MS has enabled 4D-lipidomics, a highly promising technology for comprehensive lipid analysis. 4D-lipidomics assesses lipid annotations across four distinct dimensions-retention time, collisional cross section, m/z (mass-to-charge ratio), and MS/MS spectra-providing a heightened level of confidence in lipid annotation. These advantages prove particularly valuable when investigating complex disorders involving lipid metabolism, such as adrenoleukodystrophy (ALD). ALD is characterized by the accumulation of very-long-chain fatty acids (VLCFAs) due to pathogenic variants in the ABCD1 gene. A comprehensive 4D-lipidomics strategy of ALD fibroblasts demonstrated significant elevations of various lipids from multiple classes. This indicates that the changes observed in ALD are not confined to a single lipid class and likely impacts a broad spectrum of lipid-mediated physiological processes. Our findings highlight the incorporation of mainly saturated and monounsaturated VLCFA variants into a range of lipid classes, encompassing phosphatidylcholines, triacylglycerols, and cholesterol esters. These include ultra-long-chain fatty acids with a length of up to thirty carbon atoms. Lipid species containing C26:0 and C26:1 were the most frequently detected VLCFA lipids in our study. Furthermore, we report a panel of 121 new candidate biomarkers in fibroblasts, exhibiting significant differentiation between controls and individuals with ALD. In summary, this study demonstrates the capabilities of a 4D-lipid profiling workflow in unraveling novel insights into the intricate lipid modifications associated with metabolic disorders like ALD.


Subject(s)
Adrenoleukodystrophy , Ion Mobility Spectrometry , Lipidomics , Adrenoleukodystrophy/metabolism , Adrenoleukodystrophy/genetics , Humans , Lipidomics/methods , Lipids/analysis , Lipid Metabolism
7.
Genet Med ; 26(6): 101104, 2024 06.
Article in English | MEDLINE | ID: mdl-38411040

ABSTRACT

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.


Subject(s)
Iron-Sulfur Proteins , Zebrafish , Animals , Humans , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Male , Female , Phenotype , Fibroblasts/metabolism , Fibroblasts/pathology , Cytosol/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Microcephaly/genetics , Microcephaly/pathology , Infant , Metallochaperones
8.
Mol Genet Metab ; 143(1-2): 108542, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39053126

ABSTRACT

Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5'-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.

9.
Blood ; 139(21): 3111-3126, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35213692

ABSTRACT

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Subject(s)
Anemia, Diamond-Blackfan , Proteins , Active Transport, Cell Nucleus/genetics , Anemia, Diamond-Blackfan/metabolism , Humans , Mutation , Proteins/genetics , Proteins/metabolism , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Nat Rev Mol Cell Biol ; 13(4): 225-238, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22395773

ABSTRACT

Since the beginning of the century, the mammalian sirtuin protein family (comprising SIRT1-SIRT7) has received much attention for its regulatory role, mainly in metabolism and ageing. Sirtuins act in different cellular compartments: they deacetylate histones and several transcriptional regulators in the nucleus, but also specific proteins in other cellular compartments, such as in the cytoplasm and in mitochondria. As a consequence, sirtuins regulate fat and glucose metabolism in response to physiological changes in energy levels, thereby acting as crucial regulators of the network that controls energy homeostasis and as such determines healthspan.


Subject(s)
Aging/metabolism , Sirtuins/physiology , Aging/genetics , Animals , Energy Metabolism , Glucose/metabolism , Histones/genetics , Histones/metabolism , Homeostasis , Humans , Insulin/metabolism , Insulin Secretion , Lipid Metabolism , Longevity/genetics , Multigene Family , NAD/metabolism , Phylogeny , Protein Processing, Post-Translational , Resveratrol , Stilbenes/pharmacology
11.
Article in English | MEDLINE | ID: mdl-38847892

ABSTRACT

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

12.
Hum Reprod ; 38(11): 2208-2220, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37671592

ABSTRACT

STUDY QUESTION: Are human ovarian aging and the age-related female fertility decline caused by oxidative stress and mitochondrial dysfunction in oocytes? SUMMARY ANSWER: We found oxidative damage in oocytes of advanced maternal age, even at the primordial follicle stage, and confirmed mitochondrial dysfunction in such oocytes, which likely resulted in the use of alternative energy sources. WHAT IS KNOWN ALREADY: Signs of reactive oxygen species-induced damage and mitochondrial dysfunction have been observed in maturing follicles, and even in early stages of embryogenesis. However, although recent evidence indicates that also primordial follicles have metabolically active mitochondria, it is still often assumed that these follicles avoid oxidative phosphorylation to prevent oxidative damage in dictyate arrested oocytes. Data on the influence of ovarian aging on oocyte metabolism and mitochondrial function are still limited. STUDY DESIGN, SIZE, DURATION: A set of 39 formalin-fixed and paraffin-embedded ovarian tissue biopsies were divided into different age groups and used for immunofluorescence analysis of oxidative phosphorylation activity and oxidative damage to proteins, lipids, and DNA. Additionally, 150 immature oocytes (90 germinal vesicle oocytes and 60 metaphase I oocytes) and 15 cumulus cell samples were divided into different age groups and used for targeted metabolomics and lipidomics analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: Ovarian tissues used for immunofluorescence microscopy were collected through PALGA, the nationwide network, and registry of histo- and cytopathology in The Netherlands. Comprehensive metabolomics and lipidomics were performed by liquid-liquid extraction and full-scan mass spectrometry, using oocytes and cumulus cells of women undergoing ICSI treatment based on male or tubal factor infertility, or fertility preservation for non-medical reasons. MAIN RESULTS AND THE ROLE OF CHANCE: Immunofluorescence imaging on human ovarian tissue indicated oxidative damage by protein and lipid (per)oxidation already at the primordial follicle stage. Metabolomics and lipidomics analysis of oocytes and cumulus cells in advanced maternal-age groups demonstrated a shift in the glutathione-to-oxiglutathione ratio and depletion of phospholipids. Age-related changes in polar metabolites suggested a decrease in mitochondrial function, as demonstrated by NAD+, purine, and pyrimidine depletion, while glycolysis substrates and glutamine accumulated, with age. Oocytes from women of advanced maternal age appeared to use alternative energy sources like glycolysis and the adenosine salvage pathway, and possibly ATP which showed increased production in cumulus cells. LIMITATIONS, REASONS FOR CAUTION: The immature oocytes used in this study were all subjected to ovarian stimulation with high doses of follicle-stimulating hormones, which might have concealed some age-related differences. WIDER IMPLICATIONS OF THE FINDINGS: Further studies on how to improve mitochondrial function, or lower oxidative damage, in oocytes from women of advanced maternal age, for instance by supplementation of NAD+ precursors to promote mitochondrial biogenesis, are warranted. In addition, supplementing the embryo medium of advanced maternal-age embryos with such compounds could be a treatment option worth exploring. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by the Amsterdam UMC. The authors declare to have no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
NAD , Oocytes , Humans , Female , Male , NAD/metabolism , Oocytes/metabolism , Oxidative Stress , Mitochondria/metabolism , Aging
13.
FASEB J ; 36(2): e22133, 2022 02.
Article in English | MEDLINE | ID: mdl-35032416

ABSTRACT

Shift-workers show an increased incidence of type 2 diabetes mellitus (T2DM). A possible mechanism is the disruption of the circadian timing of glucose homeostasis. Skeletal muscle mitochondrial function is modulated by the molecular clock. We used time-restricted feeding (TRF) during the inactive phase to investigate how mistimed feeding affects muscle mitochondrial metabolism. Rats on an ad libitum (AL) diet were compared to those that could eat only during the light (inactive) or dark (active) phase. Mitochondrial respiration, metabolic gene expressions, and metabolite concentrations were determined in the soleus muscle. Rats on AL feeding or dark-fed TRF showed a clear daily rhythm in muscle mitochondrial respiration. This rhythm in mitochondrial oxidative phosphorylation capacity was abolished in light-fed TRF animals and overall 24h respiration was lower. The expression of several genes involved in mitochondrial biogenesis and the fission/fusion machinery was altered in light-fed animals. Metabolomics analysis indicated that light-fed animals had lost rhythmic levels of α-ketoglutarate and citric acid. Contrastingly, lipidomics showed that light-fed animals abundantly gained rhythmicity in levels of triglycerides. Furthermore, while the RER shifted entirely with the food intake in the light-fed animals, many measured metabolic parameters (e.g., activity and mitochondrial respiration) did not strictly align with the shifted timing of food intake, resulting in a mismatch between expected metabolic supply/demand (as dictated by the circadian timing system and light/dark-cycle) and the actual metabolic supply/demand (as dictated by the timing of food intake). These data suggest that shift-work impairs mitochondrial metabolism and causes metabolic inflexibility, which can predispose to T2DM.


Subject(s)
Cell Respiration/physiology , Circadian Clocks/physiology , Circadian Rhythm/physiology , Fasting/physiology , Mitochondria/physiology , Muscle, Skeletal/physiology , Animals , Diabetes Mellitus, Type 2/physiopathology , Diet/methods , Eating/physiology , Energy Metabolism/physiology , Feeding Behavior/physiology , Gene Expression/physiology , Male , Organelle Biogenesis , Oxidative Phosphorylation , Photoperiod , Rats , Rats, Wistar
14.
J Immunol ; 206(4): 827-838, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33408258

ABSTRACT

Circulating nonadherent monocytes can migrate to extravascular sites by a process that involves adherence. Alterations in intracellular metabolism shape the immunological phenotype of phagocytes upon activation. To determine the effect of adherence on their metabolic and functional response human monocytes were stimulated with LPS under nonadherent and adherent conditions. Adherent monocytes (relative to nonadherent monocytes) produced less TNF and IL-1ß (proinflammatory) and more IL-10 (anti-inflammatory) upon LPS stimulation and had an increased capacity to phagocytose and produce reactive oxygen species. RNA sequencing analysis confirmed that adherence modified the LPS-induced response of monocytes, reducing expression of proinflammatory genes involved in TLR signaling and increasing induction of genes involved in pathogen elimination. Adherence resulted in an increased glycolytic response as indicated by lactate release, gene set enrichment, and [13C]-glucose flux analysis. To determine the role of glycolysis in LPS-induced immune responses, this pathway was inhibited by glucose deprivation or the glucose analogue 2-deoxy-d-glucose (2DG). Although both interventions equally inhibited glycolysis, only 2DG influenced monocyte functions, inhibiting expression of genes involved in TLR signaling and pathogen elimination, as well as cytokine release. 2DG, but not glucose deprivation, reduced expression of genes involved in oxidative phosphorylation. Inhibition of oxidative phosphorylation affected TNF and IL-10 release in a similar way as 2DG. Collectively, these data suggest that adherence may modify the metabolic and immunological profile of monocytes and that inhibition of glycolysis and oxidative phosphorylation, but not inhibition of glycolysis alone, has a profound effect on immune functions of monocytes exposed to LPS.


Subject(s)
Cellular Reprogramming , Immunity, Innate/drug effects , Lipopolysaccharides/toxicity , Monocytes/immunology , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cellular Reprogramming/drug effects , Cellular Reprogramming/immunology , Humans , Monokines/immunology
15.
Am J Hum Genet ; 104(6): 1040-1059, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31079900

ABSTRACT

The heterogeneous nuclear ribonucleoprotein (HNRNP) genes code for a set of RNA-binding proteins that function primarily in the spliceosome C complex. Pathogenic variants in these genes can drive neurodegeneration, through a mechanism involving excessive stress-granule formation, or developmental defects, through mechanisms that are not known. Here, we report four unrelated individuals who have truncating or missense variants in the same C-terminal region of hnRNPR and who have multisystem developmental defects including abnormalities of the brain and skeleton, dysmorphic facies, brachydactyly, seizures, and hypoplastic external genitalia. We further identified in the literature a fifth individual with a truncating variant. RNA sequencing of primary fibroblasts reveals that these HNRNPR variants drive significant changes in the expression of several homeobox genes, as well as other transcription factors, such as LHX9, TBX1, and multiple HOX genes, that are considered fundamental regulators of embryonic and gonad development. Higher levels of retained intronic HOX sequences and lost splicing events in the HOX cluster are observed in cells carrying HNRNPR variants, suggesting that impaired splicing is at least partially driving HOX deregulation. At basal levels, stress-granule formation appears normal in primary and transfected cells expressing HNRNPR variants. However, these cells reveal profound recovery defects, where stress granules fail to disassemble properly, after exposure to oxidative stress. This study establishes an essential role for HNRNPR in human development and points to a mechanism that may unify other "spliceosomopathies" linked to variants that drive multi-system congenital defects and are found in hnRNPs.


Subject(s)
Developmental Disabilities/etiology , Fibroblasts/pathology , Gene Expression Regulation , Genes, Homeobox/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Mutation , RNA Splicing/genetics , Child , Child, Preschool , Developmental Disabilities/pathology , Female , Fibroblasts/metabolism , Humans , Infant , Male , Oxidative Stress , Phenotype , Exome Sequencing
16.
FASEB J ; 35(4): e21456, 2021 04.
Article in English | MEDLINE | ID: mdl-33724555

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+ ) homeostasis is constantly compromised due to degradation by NAD+ -dependent enzymes. NAD+ replenishment by supplementation with the NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) can alleviate this imbalance. However, NMN and NR are limited by their mild effect on the cellular NAD+ pool and the need of high doses. Here, we report a synthesis method of a reduced form of NMN (NMNH), and identify this molecule as a new NAD+ precursor for the first time. We show that NMNH increases NAD+ levels to a much higher extent and faster than NMN or NR, and that it is metabolized through a different, NRK and NAMPT-independent, pathway. We also demonstrate that NMNH reduces damage and accelerates repair in renal tubular epithelial cells upon hypoxia/reoxygenation injury. Finally, we find that NMNH administration in mice causes a rapid and sustained NAD+ surge in whole blood, which is accompanied by increased NAD+ levels in liver, kidney, muscle, brain, brown adipose tissue, and heart, but not in white adipose tissue. Together, our data highlight NMNH as a new NAD+ precursor with therapeutic potential for acute kidney injury, confirm the existence of a novel pathway for the recycling of reduced NAD+ precursors and establish NMNH as a member of the new family of reduced NAD+ precursors.


Subject(s)
NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Animals , Cell Line , Cell Survival , Epithelial Cells/drug effects , Homeostasis , Humans , Kidney Tubules , Male , Mice , Mice, Inbred C57BL , Molecular Structure , NAD/genetics , Nicotinamide Mononucleotide/chemistry , Reperfusion Injury
17.
FASEB J ; 35(6): e21611, 2021 06.
Article in English | MEDLINE | ID: mdl-33977623

ABSTRACT

Circadian misalignment, as seen in shift work, is associated with an increased risk to develop type 2 diabetes. In an experimental setting, we recently showed that a rapid day-night shift for 3 consecutive nights leads to misalignment of the core molecular clock, induction of the PPAR pathway, and insulin resistance in skeletal muscle of young, healthy men. Here, we investigated if circadian misalignment affects the skeletal muscle lipidome and intramyocellular lipid droplet characteristics, explaining the misalignment-induced insulin resistance. Fourteen healthy men underwent one aligned and one circadian misalignment period, both consisting of ~3.5 days. In the misaligned condition, day and night were rapidly shifted by 12 hours leading to opposite eating, sleep, and activity times compared with the aligned condition. For each condition, two muscle biopsies were taken from the m. vastus lateralis in the morning and evening and subjected to semi-targeted lipidomics and confocal microscopy analysis. We found that only 2% of detected lipids were different between morning and evening in the aligned condition, whereas 12% displayed a morning-evening difference upon misalignment. Triacylglycerols, in particular species of a carbon length ≥55, were the most abundant lipid species changed upon misalignment. Cardiolipins were decreased upon misalignment, whereas phosphatidylcholines consistently followed the same morning-evening pattern, suggesting regulation by the circadian clock. Cholesteryl esters adjusted to the shifted behavior. Lipid droplet characteristics remained unaltered upon misalignment. Together, these findings show that simulated shift work disturbs the skeletal muscle lipidome, which may contribute to misalignment-induced insulin resistance.


Subject(s)
Circadian Rhythm , Lipidomics/methods , Lipids/analysis , Muscle, Skeletal/pathology , Adult , Humans , Male , Muscle, Skeletal/metabolism , Young Adult
18.
Circ Res ; 126(10): 1346-1359, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32160811

ABSTRACT

RATIONALE: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. OBJECTIVE: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. METHODS AND RESULTS: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. CONCLUSIONS: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Glycolysis , Leukocytes/metabolism , Lipoprotein(a)/metabolism , Transendothelial and Transepithelial Migration , Aged , Aged, 80 and over , Animals , Apolipoprotein B-100/genetics , Apolipoprotein B-100/metabolism , Apolipoproteins A/genetics , Apolipoproteins A/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/therapy , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Inflammation Mediators , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/pathology , Lipoprotein(a)/genetics , Male , Mice, Transgenic , Middle Aged , Mutation , Oligonucleotides, Antisense/therapeutic use , Phosphofructokinase-2/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics
19.
J Inherit Metab Dis ; 45(1): 29-37, 2022 01.
Article in English | MEDLINE | ID: mdl-34382226

ABSTRACT

Barth syndrome is an X-linked disorder characterized by cardiomyopathy, skeletal myopathy, and neutropenia, caused by deleterious variants in TAFAZZIN. This gene encodes a phospholipid-lysophospholipid transacylase that is required for the remodeling of the mitochondrial phospholipid cardiolipin (CL). Biochemically, individuals with Barth syndrome have a deficiency of mature CL and accumulation of the remodeling intermediate monolysocardiolipin (MLCL). Diagnosis typically relies on mass spectrometric measurement of CL and MLCL in cells or tissues, and we previously described a method in blood spot that uses a specific MLCL/CL ratio as diagnostic biomarker. Here, we describe the evolution of our blood spot assay that is based on the implementation of reversed phase-UHPLC separation followed by full scan high resolution mass spectrometry. In addition to the MLCL/CL ratio, our improved method also generates a complete CL spectrum allowing the interrogation of the CL fatty acid composition, which considerably enhances the diagnostic reliability. This addition negates the need for a confirmatory test in lymphocytes thereby providing a shorter turn-around-time while achieving a more certain test result. As one of the few laboratories that offer this assay, we also evaluated the diagnostic yield and performance from 2006 to 2021 encompassing the use of both the original and improved assay. In this period, we performed 796 diagnostic analyses of which 117 (15%) were characteristic of Barth syndrome. In total, we diagnosed 93 unique individuals with Barth syndrome, including three females, which together amounts to about 40% of all reported individuals with Barth syndrome in the world.


Subject(s)
Barth Syndrome/diagnosis , Cardiolipins/blood , Lymphocytes/metabolism , Lysophospholipids/blood , Adolescent , Adult , Barth Syndrome/blood , Child , Child, Preschool , Female , Humans , Linear Models , Lymphocytes/chemistry , Male , Mass Spectrometry , Reproducibility of Results , Young Adult
20.
J Inherit Metab Dis ; 45(4): 804-818, 2022 07.
Article in English | MEDLINE | ID: mdl-35383965

ABSTRACT

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is included in many newborn screening (NBS) programs. Acylcarnitine-based NBS for LCHADD not only identifies LCHADD, but also the other deficiencies of the mitochondrial trifunctional protein (MTP), a multi-enzyme complex involved in long-chain fatty acid ß-oxidation. Besides LCHAD, MTP harbors two additional enzyme activities: long-chain enoyl-CoA hydratase (LCEH) and long-chain ketoacyl-CoA thiolase (LCKAT). Deficiency of one or more MTP activities causes generalized MTP deficiency (MTPD), LCHADD, LCEH deficiency (not yet reported), or LCKAT deficiency (LCKATD). To gain insight in the outcomes of MTP-deficient patients diagnosed after the introduction of NBS for LCHADD in the Netherlands, a retrospective evaluation of genetic, biochemical, and clinical characteristics of MTP-deficient patients, identified since 2007, was carried out. Thirteen patients were identified: seven with LCHADD, five with MTPD, and one with LCKATD. All LCHADD patients (one missed by NBS, clinical diagnosis) and one MTPD patient (clinical diagnosis) were alive. Four MTPD patients and one LCKATD patient developed cardiomyopathy and died within 1 month and 13 months of life, respectively. Surviving patients did not develop symptomatic hypoglycemia, but experienced reversible cardiomyopathy and rhabdomyolysis. Five LCHADD patients developed subclinical neuropathy and/or retinopathy. In conclusion, patient outcomes were highly variable, stressing the need for accurate classification of and discrimination between the MTP deficiencies to improve insight in the yield of NBS for LCHADD. NBS allowed the prevention of symptomatic hypoglycemia, but current treatment options failed to treat cardiomyopathy and prevent long-term complications. Moreover, milder patients, who might benefit from NBS, were missed due to normal acylcarnitine profiles.


Subject(s)
Cardiomyopathies , Hypoglycemia , Lipid Metabolism, Inborn Errors , Rhabdomyolysis , 3-Hydroxyacyl CoA Dehydrogenases , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Humans , Infant, Newborn , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Mitochondrial Myopathies , Mitochondrial Trifunctional Protein/deficiency , Molecular Biology , Neonatal Screening , Nervous System Diseases , Netherlands , Retrospective Studies , Rhabdomyolysis/diagnosis , Rhabdomyolysis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL