Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36179668

ABSTRACT

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Subject(s)
Endothelial Cells , Neovascularization, Physiologic , Brain , Collagen , Humans , Laminin , Midkine , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/physiology , Pericytes
2.
Cell ; 164(3): 347-8, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824651

ABSTRACT

Building a nervous system requires a precise sequence of genetic transitions, mediated in part by the temporal and spatial regulation of transcription factors. Quan et al. add to our understanding of this regulation by describing an evolutionarily conserved post-translational mechanism that rapidly extinguishes proneural protein activity in neural precursors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Neurogenesis , Animals
3.
Curr Biol ; 29(24): 4218-4230.e8, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31786064

ABSTRACT

To navigate complex environments, animals must generate highly robust, yet flexible, locomotor behaviors. For example, walking speed must be tailored to the needs of a particular environment. Not only must animals choose the correct speed and gait, they must also adapt to changing conditions and quickly respond to sudden and surprising new stimuli. Neuromodulators, particularly the small biogenic amine neurotransmitters, have the ability to rapidly alter the functional outputs of motor circuits. Here, we show that the serotonergic system in the vinegar fly, Drosophila melanogaster, can modulate walking speed in a variety of contexts and also change how flies respond to sudden changes in the environment. These multifaceted roles of serotonin in locomotion are differentially mediated by a family of serotonergic receptors with distinct activities and expression patterns.


Subject(s)
Serotonergic Neurons/physiology , Spatial Navigation/physiology , Walking/physiology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster , Female , Gait/physiology , Locomotion/physiology , Receptors, Serotonin/metabolism , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL