Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 299
Filter
1.
Nat Rev Genet ; 25(2): 142-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37749210

ABSTRACT

Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.


Subject(s)
Drug Resistance, Bacterial , One Health , Animals , Humans , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Genomics , Animals, Wild
2.
J Infect Dis ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877763

ABSTRACT

While ceftriaxone remains the first-line treatment for gonorrhoea, the US CDC recommended cefixime as a second-line treatment in 2021. We tested 1176 Neisseria gonorrhoeae isolates among clients attending the Melbourne Sexual Health Centre in 2021-2022. The prevalence of cefixime resistance was 6.3% (74/1176), azithromycin resistance was 4.9% (58/1176) and ceftriaxone resistance was 0% (0/1176). Cefixime resistance was the highest among women (16.4%, 10/61), followed by men-who-have-sex-with-women (6.4%, 7/109), and men-who-have-sex-with-men (5.8%, 57/982). The prevalence of cefixime-resistant N. gonorrhoeae exceeds the threshold of the 5% resistance level recommended by the World Health Organization; and thus, cefixime treatment would have limited benefits in Australia.

3.
Clin Infect Dis ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752311

ABSTRACT

BACKGROUND: Limited data exists on effects of intrapartum azithromycin on prevalence of carriage and antibiotic resistance of Enterobacterales. METHODS: We conducted a randomized trial in Gambia and Burkina Faso where women received intrapartum azithromycin (2g) or placebo. We determined impact of treatment on prevalence of carriage and antibiotic resistance of Escherichia coli and Klebsiella pneumoniae by analysing rectal swabs (RS), nasopharyngeal swabs (NPS), breast milk and recto-vaginal swabs (RVS). Bacteria were isolated microbiologically; antibiotic susceptibility was confirmed with an E-test. Prevalence ratios (PR) with 95% confidence intervals (CI's) were used for comparison between arms. RESULTS: In infants, E. coli carriage in RS was lower in the intervention than placebo arm at days 6 (63.0% vs. 75.2%, PR, 0.84; CI, 0.75-0.95) and 28 (52.7% vs. 70.4%, 0.75; 0.64-0.87) post-intervention. Prevalence of azithromycin-resistant E. coli was higher in the azithromycin arm at days 6 (13.4% vs. 3.6%, 3.75; 1.83-7.69) and 28 (16.4% vs. 9.6%, 1.71; 1.05-2.79). For K. pneumoniae, carriage in RS was higher in the intervention than placebo arm at days 6 (49.6% vs. 37.2%, 1.33; 1.08-1.64) and 28 (53.6% vs. 32.9%, 1.63; 1.31-2.03). Prevalence of azithromycin-resistant K. pneumoniae was higher in the azithromycin arm at day 28 (7.3% vs. 2.1%, 3.49; 1.30-9.37). No differences were observed for other sample types. CONCLUSION: Intrapartum azithromycin decreased E. coli carriage but increased both K. pneumoniae carriage and azithromycin resistance in both bacteria. These data need to be considered together with efficacy results to balance the potential short- and long-term impact of the intervention. CLINICAL TRIALS REGISTRATION: www.clinicaltrials.gov: NCT03199547.

4.
Emerg Infect Dis ; 30(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38190760

ABSTRACT

To support the ongoing management of viral respiratory diseases while transitioning out of the acute phase of the COVID-19 pandemic, many countries are moving toward an integrated model of surveillance for SARS-CoV-2, influenza virus, and other respiratory pathogens. Although many surveillance approaches catalyzed by the COVID-19 pandemic provide novel epidemiologic insight, continuing them as implemented during the pandemic is unlikely to be feasible for nonemergency surveillance, and many have already been scaled back. Furthermore, given anticipated cocirculation of SARS-CoV-2 and influenza virus, surveillance activities in place before the pandemic require review and adjustment to ensure their ongoing value for public health. In this report, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies as well as their contribution to epidemiologic assessment, forecasting, and public health decision-making.


Subject(s)
COVID-19 , Virus Diseases , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Public Health
5.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38837393

ABSTRACT

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Subject(s)
Anti-Bacterial Agents , Cefazolin , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefazolin/pharmacology , Cefazolin/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Oxacillin/pharmacology , Bacteremia/drug therapy , Bacteremia/microbiology , Phenotype , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Male , Sodium Bicarbonate/pharmacology , Female , Middle Aged
6.
Appl Environ Microbiol ; 90(3): e0129223, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38289130

ABSTRACT

Fundamental to effective Legionnaires' disease outbreak control is the ability to rapidly identify the environmental source(s) of the causative agent, Legionella pneumophila. Genomics has revolutionized pathogen surveillance, but L. pneumophila has a complex ecology and population structure that can limit source inference based on standard core genome phylogenetics. Here, we present a powerful machine learning approach that assigns the geographical source of Legionnaires' disease outbreaks more accurately than current core genome comparisons. Models were developed upon 534 L. pneumophila genome sequences, including 149 genomes linked to 20 previously reported Legionnaires' disease outbreaks through detailed case investigations. Our classification models were developed in a cross-validation framework using only environmental L. pneumophila genomes. Assignments of clinical isolate geographic origins demonstrated high predictive sensitivity and specificity of the models, with no false positives or false negatives for 13 out of 20 outbreak groups, despite the presence of within-outbreak polyclonal population structure. Analysis of the same 534-genome panel with a conventional phylogenomic tree and a core genome multi-locus sequence type allelic distance-based classification approach revealed that our machine learning method had the highest overall classification performance-agreement with epidemiological information. Our multivariate statistical learning approach maximizes the use of genomic variation data and is thus well-suited for supporting Legionnaires' disease outbreak investigations.IMPORTANCEIdentifying the sources of Legionnaires' disease outbreaks is crucial for effective control. Current genomic methods, while useful, often fall short due to the complex ecology and population structure of Legionella pneumophila, the causative agent. Our study introduces a high-performing machine learning approach for more accurate geographical source attribution of Legionnaires' disease outbreaks. Developed using cross-validation on environmental L. pneumophila genomes, our models demonstrate excellent predictive sensitivity and specificity. Importantly, this new approach outperforms traditional methods like phylogenomic trees and core genome multi-locus sequence typing, proving more efficient at leveraging genomic variation data to infer outbreak sources. Our machine learning algorithms, harnessing both core and accessory genomic variation, offer significant promise in public health settings. By enabling rapid and precise source identification in Legionnaires' disease outbreaks, such approaches have the potential to expedite intervention efforts and curtail disease transmission.


Subject(s)
Legionella pneumophila , Legionnaires' Disease , Humans , Legionella pneumophila/genetics , Legionnaires' Disease/epidemiology , Multilocus Sequence Typing/methods , Genomics/methods , Molecular Epidemiology/methods , Disease Outbreaks
7.
Article in English | MEDLINE | ID: mdl-33593834

ABSTRACT

Topical antibiotic preparations, such as fusidic acid (FA) or mupirocin, are used in the prevention and treatment of superficial skin infections caused by staphylococci. Previous genomic epidemiology work has suggested an association between the widespread use of topical antibiotics and the emergence of methicillin resistant Staphylococcus aureus in some settings. In this study, we provide experimental proof of co-selection for multidrug resistance in S. aureus following exposure to FA or mupirocin. Through targeted mutagenesis and phenotypic analyses, we confirmed that fusC carriage confers resistance to FA, and mupA carriage confers high-level resistance to mupirocin in multiple S. aureus genetic backgrounds. In vitro experiments demonstrated that carriage of fusC and mupA confer a competitive advantage in the presence of sub-inhibitory concentrations of FA and mupirocin, respectively. Further, we used a porcine skin colonisation model to show that clinically relevant concentrations of topical antibiotics can co-select for presence of unrelated antimicrobial resistance determinants, such as mecA, blaZ, and qacA, in fusC or mupA harbouring S. aureus These findings provide valuable insights on the role of acquired FA or mupirocin resistance in co-selecting for broader antibiotic resistance in S. aureus, prompting greater need for judicious use of topical antibiotics.

8.
Antimicrob Agents Chemother ; 67(11): e0078523, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37823632

ABSTRACT

Streptococcus pneumoniae is a major human pathogen with a high burden of disease. Non-invasive isolates (those found in non-sterile sites) are thought to be a key source of invasive isolates (those found in sterile sites) and a reservoir of anti-microbial resistance (AMR) determinants. Despite this, pneumococcal surveillance has almost exclusively focused on invasive isolates. We aimed to compare contemporaneous invasive and non-invasive isolate populations to understand how they interact and identify differences in AMR gene distribution. We used a combination of whole-genome sequencing and phenotypic anti-microbial susceptibility testing and a data set of invasive (n = 1,288) and non-invasive (n = 186) pneumococcal isolates, collected in Victoria, Australia, between 2018 and 2022. The non-invasive population had increased levels of antibiotic resistance to multiple classes of antibiotics including beta-lactam antibiotics penicillin and ceftriaxone. We identified genomic intersections between the invasive and non-invasive populations and no distinct phylogenetic clustering of the two populations. However, this analysis revealed sub-populations overrepresented in each population. The sub-populations that had high levels of AMR were overrepresented in the non-invasive population. We determined that WamR-Pneumo was the most accurate in silico tool for predicting resistance to the antibiotics tested. This tool was then used to assess the allelic diversity of the penicillin-binding protein genes, which acquire mutations leading to beta-lactam antibiotic resistance, and found that they were highly conserved (≥80% shared) between the two populations. These findings show the potential of non-invasive isolates to serve as reservoirs of AMR determinants.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Pneumococcal Infections/drug therapy , Pneumococcal Infections/epidemiology , Phylogeny , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
9.
Antimicrob Agents Chemother ; 67(6): e0032823, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37184389

ABSTRACT

Daptomycin is a last-resort antibiotic used for the treatment of infections caused by Gram-positive antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). Treatment failure is commonly linked to accumulation of point mutations; however, the contribution of single mutations to resistance and the mechanisms underlying resistance remain incompletely understood. Here, we show that a single nucleotide polymorphism (SNP) selected during daptomycin therapy inactivates the highly conserved ClpP protease and is causing reduced susceptibility of MRSA to daptomycin, vancomycin, and ß-lactam antibiotics as well as decreased expression of virulence factors. Super-resolution microscopy demonstrated that inactivation of ClpP reduced binding of daptomycin to the septal site and diminished membrane damage. In both the parental strain and the clpP strain, daptomycin inhibited the inward progression of septum synthesis, eventually leading to lysis and death of the parental strain while surviving clpP cells were able to continue synthesis of the peripheral cell wall in the presence of 10× MIC daptomycin, resulting in a rod-shaped morphology. To our knowledge, this is the first demonstration that synthesis of the outer cell wall continues in the presence of daptomycin. Collectively, our data provide novel insight into the mechanisms behind bacterial killing and resistance to this important antibiotic. Also, the study emphasizes that treatment with last-line antibiotics is selective for mutations that, like the SNP in clpP, favor antibiotic resistance over virulence gene expression.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Daptomycin/pharmacology , Staphylococcus aureus/genetics , Vancomycin/pharmacology , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
10.
Proc Biol Sci ; 290(2005): 20231030, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37583318

ABSTRACT

The fitness effects of antibiotic resistance mutations are a major driver of resistance evolution. While the nutrient environment affects bacterial fitness, experimental studies of resistance typically measure fitness of mutants in a single environment only. We explored how the nutrient environment affected the fitness effects of rifampicin-resistant rpoB mutations in Escherichia coli under several conditions critical for the emergence and spread of resistance-the presence of primary or secondary antibiotic, or the absence of any antibiotic. Pervasive genotype-by-environment (GxE) interactions determined fitness in all experimental conditions, with rank order of fitness in the presence and absence of antibiotics being strongly dependent on the nutrient environment. GxE interactions also affected the magnitude and direction of collateral effects of secondary antibiotics, in some cases so drastically that a mutant that was highly sensitive in one nutrient environment exhibited cross-resistance to the same antibiotic in another. It is likely that the mutant-specific impact of rpoB mutations on the global transcriptome underpins the observed GxE interactions. The pervasive, mutant-specific GxE interactions highlight the importance of doing what is rarely done when studying the evolution and spread of resistance in experimental and clinical work: assessing fitness of antibiotic-resistant mutants across a range of relevant environments.


Subject(s)
Drug Resistance, Bacterial , Gene-Environment Interaction , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Mutation , Genotype , Escherichia coli/genetics , Genetic Fitness
11.
J Antimicrob Chemother ; 78(6): 1499-1504, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37071589

ABSTRACT

OBJECTIVES: There is clinical uncertainty over the optimal treatment for penicillin-susceptible Staphylococcus aureus (PSSA) infections. Furthermore, there is concern that phenotypic penicillin susceptibility testing methods are not reliably able to detect some blaZ-positive S. aureus. METHODS: Nine S. aureus isolates, including six genetically diverse strains harbouring blaZ, were sent in triplicate to 34 participating laboratories from Australia (n = 14), New Zealand (n = 6), Canada (n = 12), Singapore (n = 1) and Israel (n = 1). We used blaZ PCR as the gold standard to assess susceptibility testing performance of CLSI (P10 disc) and EUCAST (P1 disc) methods. Very major errors (VMEs), major error (MEs) and categorical agreement were calculated. RESULTS: Twenty-two laboratories reported 593 results according to CLSI methodology (P10 disc). Nineteen laboratories reported 513 results according to the EUCAST (P1 disc) method. For CLSI laboratories, the categorical agreement and calculated VME and ME rates were 85% (508/593), 21% (84/396) and 1.5% (3/198), respectively. For EUCAST laboratories, the categorical agreement and calculated VME and ME rates were 93% (475/513), 11% (84/396) and 1% (3/198), respectively. Seven laboratories reported results for both methods, with VME rates of 24% for CLSI and 12% for EUCAST. CONCLUSIONS: The EUCAST method with a P1 disc resulted in a lower VME rate compared with the CLSI methods with a P10 disc. These results should be considered in the context that among collections of PSSA isolates, as determined by automated MIC testing, less than 10% harbour blaZ. Furthermore, the clinical relevance of phenotypically susceptible, but blaZ-positive S. aureus, remains unclear.


Subject(s)
Anti-Bacterial Agents , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Penicillins/pharmacology , Microbial Sensitivity Tests , Clinical Decision-Making , Uncertainty
12.
Emerg Infect Dis ; 28(7): 1527-1530, 2022 07.
Article in English | MEDLINE | ID: mdl-35483111

ABSTRACT

Epidemiologic and genomic investigation of SARS-CoV-2 infections associated with 2 repatriation flights from India to Australia in April 2021 indicated that 4 passengers transmitted SARS-CoV-2 to >11 other passengers. Results suggest transmission despite mandatory mask use and predeparture testing. For subsequent flights, predeparture quarantine and expanded predeparture testing were implemented.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Quarantine , SARS-CoV-2/genetics
13.
Hepatology ; 73(5): 1652-1670, 2021 05.
Article in English | MEDLINE | ID: mdl-32780526

ABSTRACT

BACKGROUND AND AIMS: We conducted haplotype analysis of complete hepatitis B virus (HBV) genomes following deep sequencing from 368 patients across multiple phases of chronic hepatitis B (CHB) infection from four major genotypes (A-D), analyzing 4,110 haplotypes to identify viral variants associated with treatment outcome and disease progression. APPROACH AND RESULTS: Between 18.2% and 41.8% of nucleotides and between 5.9% and 34.3% of amino acids were 100% conserved in all genotypes and phases examined, depending on the region analyzed. Hepatitis B e antigen (HBeAg) loss by week 192 was associated with different haplotype populations at baseline. Haplotype populations differed across the HBV genome and CHB history, this being most pronounced in the precore/core gene. Mean number of haplotypes (frequency) per patient was higher in immune-active, HBeAg-positive chronic hepatitis phase 2 (11.8) and HBeAg-negative chronic hepatitis phase 4 (16.2) compared to subjects in the "immune-tolerant," HBeAg-positive chronic infection phase 1 (4.3, P< 0.0001). Haplotype frequency was lowest in genotype B (6.2, P< 0.0001) compared to the other genotypes (A = 11.8, C = 11.8, D = 13.6). Haplotype genetic diversity increased over the course of CHB history, being lowest in phase 1, increasing in phase 2, and highest in phase 4 in all genotypes except genotype C. HBeAg loss by week 192 of tenofovir therapy was associated with different haplotype populations at baseline. CONCLUSIONS: Despite a degree of HBV haplotype diversity and heterogeneity across the phases of CHB natural history, highly conserved sequences in key genes and regulatory regions were identified in multiple HBV genotypes that should be further investigated as targets for antiviral therapies and predictors of treatment response.


Subject(s)
Conserved Sequence/genetics , Haplotypes/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Adolescent , Adult , Disease Progression , Female , Genetic Variation/genetics , Genome, Viral/genetics , Genotype , Hepatitis B e Antigens/genetics , Hepatitis B, Chronic/pathology , Humans , Male , Middle Aged , Sequence Analysis, DNA , Young Adult
14.
Proc Natl Acad Sci U S A ; 116(40): 20135-20140, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31527262

ABSTRACT

Staphylococcus aureus small-colony variants (SCVs) are associated with unusually chronic and persistent infections despite active antibiotic treatment. The molecular basis for this clinically important phenomenon is poorly understood, hampered by the instability of the SCV phenotype. Here we investigated the genetic basis for an unstable S. aureus SCV that arose spontaneously while studying rifampicin resistance. This SCV showed no nucleotide differences across its genome compared with a normal-colony variant (NCV) revertant, yet the SCV presented the hallmarks of S. aureus linked to persistent infection: down-regulation of virulence genes and reduced hemolysis and neutrophil chemotaxis, while exhibiting increased survival in blood and ability to invade host cells. Further genome analysis revealed chromosome structural variation uniquely associated with the SCV. These variations included an asymmetric inversion across half of the S. aureus chromosome via recombination between type I restriction modification system (T1RMS) genes, and the activation of a conserved prophage harboring the immune evasion cluster (IEC). Phenotypic reversion to the wild-type-like NCV state correlated with reversal of the chromosomal inversion (CI) and with prophage stabilization. Further analysis of 29 complete S. aureus genomes showed strong signatures of recombination between hsdMS genes, suggesting that analogous CI has repeatedly occurred during S. aureus evolution. Using qPCR and long-read amplicon deep sequencing, we detected subpopulations with T1RMS rearrangements causing CIs and prophage activation across major S. aureus lineages. Here, we have discovered a previously unrecognized and widespread mechanism of reversible genomic instability in S. aureus associated with SCV generation and persistent infections.


Subject(s)
Chromosomal Instability , Chromosomes, Bacterial , Phenotype , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Translocation, Genetic , Chromosome Inversion , Gene Order , Genome, Bacterial , Hemolysis , Humans , Staphylococcus Phages/physiology , Staphylococcus aureus/virology
15.
Proc Natl Acad Sci U S A ; 116(9): 3722-3727, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808758

ABSTRACT

Staphylococcus aureus is a notorious human bacterial pathogen with considerable capacity to develop antibiotic resistance. We have observed that human infections caused by highly drug-resistant S. aureus are more prolonged, complicated, and difficult to eradicate. Here we describe a metabolic adaptation strategy used by clinical S. aureus strains that leads to resistance to the last-line antibiotic, daptomycin, and simultaneously affects host innate immunity. This response was characterized by a change in anionic membrane phospholipid composition induced by point mutations in the phospholipid biosynthesis gene, cls2, encoding cardiolipin synthase. Single cls2 point mutations were sufficient for daptomycin resistance, antibiotic treatment failure, and persistent infection. These phenotypes were mediated by enhanced cardiolipin biosynthesis, leading to increased bacterial membrane cardiolipin and reduced phosphatidylglycerol. The changes in membrane phospholipid profile led to modifications in membrane structure that impaired daptomycin penetration and membrane disruption. The cls2 point mutations also allowed S. aureus to evade neutrophil chemotaxis, mediated by the reduction in bacterial membrane phosphatidylglycerol, a previously undescribed bacterial-driven chemoattractant. Together, these data illustrate a metabolic strategy used by S. aureus to circumvent antibiotic and immune attack and provide crucial insights into membrane-based therapeutic targeting of this troublesome pathogen.


Subject(s)
Drug Resistance, Bacterial/genetics , Membrane Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial/immunology , Gene Expression Regulation, Bacterial/drug effects , Host-Pathogen Interactions/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/immunology , Methicillin-Resistant Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Transferases (Other Substituted Phosphate Groups)/metabolism
16.
J Biol Chem ; 295(33): 11803-11821, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32605922

ABSTRACT

Staphylococcus aureus is among the leading causes of bacterial infections worldwide. The pathogenicity and establishment of S. aureus infections are tightly linked to its ability to modulate host immunity. Persistent infections are often associated with mutant staphylococcal strains that have decreased susceptibility to antibiotics; however, little is known about how these mutations influence bacterial interaction with the host immune system. Here, we discovered that clinical S. aureus isolates activate human monocytes, leading to cell-surface expression of immune stimulatory natural killer group 2D (NKG2D) ligands on the monocytes. We found that expression of the NKG2D ligand ULBP2 (UL16-binding protein 2) is associated with bacterial degradability and phagolysosomal activity. Moreover, S. aureus-induced ULBP2 expression was linked to altered host cell metabolism, including increased cytoplasmic (iso)citrate levels, reduced glycolytic flux, and functional mitochondrial activity. Interestingly, we found that the ability of S. aureus to induce ULBP2 and proinflammatory cytokines in human monocytes depends on a functional ClpP protease in S. aureus These findings indicate that S. aureus activates ULBP2 in human monocytes through immunometabolic mechanisms and reveal that clpP inactivation may function as a potential immune evasion mechanism. Our results provide critical insight into the interplay between the host immune system and S. aureus that has evolved under the dual selective pressure of host immune responses and antibiotic treatment. Our discovery of an immune stimulatory pathway consisting of human monocyte-based defense against S. aureus suggests that targeting the NKG2D pathway holds potential for managing persistent staphylococcal infections.


Subject(s)
Intercellular Signaling Peptides and Proteins/immunology , Monocytes/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Cell Line , GPI-Linked Proteins/analysis , GPI-Linked Proteins/immunology , Humans , Immune Evasion , Intercellular Signaling Peptides and Proteins/analysis , Phagocytosis
17.
Clin Infect Dis ; 73(7): e1881-e1884, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32927479

ABSTRACT

Healthcare workers are at increased risk of occupational transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report 2 instances of healthcare workers contracting SARS-CoV-2 despite no known breach of personal protective equipment. Additional specific equipment cleaning was initiated. Viral genomic sequencing supported this transmission hypothesis and our subsequent response.


Subject(s)
COVID-19 , Genomics , Humans , Infection Control , Personal Protective Equipment , SARS-CoV-2
18.
Clin Infect Dis ; 73(11): e3912-e3920, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32663248

ABSTRACT

BACKGROUND: Multiresistant organisms (MROs) pose a critical threat to public health. Population-based programs for control of MROs such as carbapenemase-producing Enterobacterales (CPE) have emerged and evaluation is needed. We assessed the feasibility and impact of a statewide CPE surveillance and response program deployed across Victoria, Australia (population 6.5 million). METHODS: A prospective multimodal intervention including active screening, carrier isolation, centralized case investigation, and comparative pathogen genomics was implemented. We analyzed trends in CPE incidence and clinical presentation, risk factors, and local transmission over the program's first 3 years (2016-2018). RESULTS: CPE case ascertainment increased over the study period to 1.42 cases/100 000 population, linked to increased screening without a concomitant rise in active clinical infections (0.45-0.60 infections/100 000 population, P = .640). KPC-2 infection decreased from 0.29 infections/100 000 population prior to intervention to 0.03 infections/100 000 population in 2018 (P = .003). Comprehensive case investigation identified instances of overseas community acquisition. Median time between isolate referral and genomic and epidemiological assessment for local transmission was 11 days (IQR, 9-14). Prospective surveillance identified numerous small transmission networks (median, 2; range, 1-19 cases), predominantly IMP and KPC, with median pairwise distance of 8 (IQR, 4-13) single nucleotide polymorphisms; low diversity between clusters of the same sequence type suggested genomic cluster definitions alone are insufficient for targeted response. CONCLUSIONS: We demonstrate the value of centralized CPE control programs to increase case ascertainment, resolve risk factors, and identify local transmission through prospective genomic and epidemiological surveillance; methodologies are transferable to low-prevalence settings and MROs globally.


Subject(s)
Enterobacteriaceae Infections , Bacterial Proteins/genetics , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/prevention & control , Genomics , Humans , Prospective Studies , Victoria , beta-Lactamases/genetics
19.
Antimicrob Agents Chemother ; 65(12): e0120021, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34543095

ABSTRACT

Typhoid fever is an invasive bacterial disease of humans that disproportionately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, limiting treatment options. In Australia, most cases of typhoid fever are imported due to travel to regions where typhoid fever is endemic. Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and 30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility testing. Genomic data were linked to international travel data collected from routine case interviews. Travel to South Asia accounted for most cases, with 92.2% imported from seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of 17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and 4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively drug resistant isolates (90%) were from cases with reported travel to Pakistan in genotypes 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking epidemiological data with genomic studies of S. Typhi provides an opportunity to improve understanding of the emergence, spread and risk of drug-resistant S. Typhi infections and to better inform empirical treatment guidelines in returned travelers.


Subject(s)
Typhoid Fever , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Genomics , Humans , Salmonella typhi/genetics , Typhoid Fever/drug therapy , Typhoid Fever/epidemiology , Victoria
20.
Microbiology (Reading) ; 167(12)2021 12.
Article in English | MEDLINE | ID: mdl-34928202

ABSTRACT

Staphylococcus aureus is a major human pathogen where the emergence of antibiotic resistant lineages, such as methicillin-resistant S. aureus (MRSA), is a major health concern. While some MRSA lineages are restricted to the healthcare setting, the epidemiology of MRSA is changing globally, with the rise of specific lineages causing disease in healthy people in the community. In the past two decades, community-associated MRSA (CA-MRSA) has emerged as a clinically important and virulent pathogen associated with serious skin and soft-tissue infections (SSTI). These infections are primarily cytotoxin driven, leading to the suggestion that hypervirulent lineages/multi-locus sequence types (STs) exist. To examine this, we compared the cytotoxicity of 475 MRSA isolates representing five major MRSA STs (ST22, ST93, ST8, ST239 and ST36) by employing a monocyte-macrophage THP-1 cell line as a surrogate for measuring gross cytotoxicity. We demonstrate that while certain MRSA STs contain highly toxic isolates, there is such variability within lineages to suggest that this aspect of virulence should not be inferred from the genotype of any given isolate. Furthermore, by interrogating the accessory gene regulator (Agr) sequences in this collection we identified several Agr mutations that were associated with reduced cytotoxicity. Interestingly, the majority of isolates that were attenuated in cytotoxin production contained no mutations in the agr locus, indicating a role of other undefined genes in S. aureus toxin regulation.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Genotype , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Staphylococcal Infections/epidemiology , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL