Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36368308

ABSTRACT

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , DNA Copy Number Variations/genetics , Genomics
2.
Nature ; 586(7827): 80-86, 2020 10.
Article in English | MEDLINE | ID: mdl-32717741

ABSTRACT

Tandem DNA repeats vary in the size and sequence of each unit (motif). When expanded, these tandem DNA repeats have been associated with more than 40 monogenic disorders1. Their involvement in disorders with complex genetics is largely unknown, as is the extent of their heterogeneity. Here we investigated the genome-wide characteristics of tandem repeats that had motifs with a length of 2-20 base pairs in 17,231 genomes of families containing individuals with autism spectrum disorder (ASD)2,3 and population control individuals4. We found extensive polymorphism in the size and sequence of motifs. Many of the tandem repeat loci that we detected correlated with cytogenetic fragile sites. At 2,588 loci, gene-associated expansions of tandem repeats that were rare among population control individuals were significantly more prevalent among individuals with ASD than their siblings without ASD, particularly in exons and near splice junctions, and in genes related to the development of the nervous system and cardiovascular system or muscle. Rare tandem repeat expansions had a prevalence of 23.3% in children with ASD compared with 20.7% in children without ASD, which suggests that tandem repeat expansions make a collective contribution to the risk of ASD of 2.6%. These rare tandem repeat expansions included previously undescribed ASD-linked expansions in DMPK and FXN, which are associated with neuromuscular conditions, and in previously unknown loci such as FGF14 and CACNB1. Rare tandem repeat expansions were associated with lower IQ and adaptive ability. Our results show that tandem DNA repeat expansions contribute strongly to the genetic aetiology and phenotypic complexity of ASD.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Repeat Expansion/genetics , Genome, Human/genetics , Genomics , Tandem Repeat Sequences/genetics , Female , Fibroblast Growth Factors/genetics , Genetic Predisposition to Disease , Humans , Intelligence/genetics , Iron-Binding Proteins/genetics , Male , Myotonin-Protein Kinase/genetics , Nucleotide Motifs , Polymorphism, Genetic , Frataxin
3.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37195288

ABSTRACT

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Subject(s)
Axon Initial Segment , Epilepsy , Induced Pluripotent Stem Cells , Humans , Axon Initial Segment/metabolism , Ankyrins/genetics , Ankyrins/metabolism , Neurons/metabolism , Epilepsy/genetics , Epilepsy/metabolism
4.
Brain ; 146(2): 534-548, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35979925

ABSTRACT

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Induced Pluripotent Stem Cells , Language Development Disorders , Neurodevelopmental Disorders , Animals , Mice , Humans , Autism Spectrum Disorder/genetics , Haploinsufficiency/genetics , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Proteins/genetics , Cell Cycle Proteins/genetics
5.
Mol Psychiatry ; 27(8): 3328-3342, 2022 08.
Article in English | MEDLINE | ID: mdl-35501408

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized by impaired social communication, restricted interests, and repetitive and stereotyped behaviors. The TRPC6 (transient receptor potential channel 6) represents an ASD candidate gene under an oligogenic/multifactorial model based on the initial description and cellular characterization of an individual with ASD bearing a de novo heterozygous mutation disrupting TRPC6, together with the enrichment of disruptive TRPC6 variants in ASD cases as compared to controls. Here, we perform a clinical re-evaluation of the initial non-verbal patient, and also present eight newly reported individuals ascertained for ASD and bearing predicted loss-of-function mutations in TRPC6. In order to understand the consequences of mutations in TRPC6 on nervous system function, we used the fruit fly, Drosophila melanogaster, to show that null mutations in transient receptor gamma (trpγ; the fly gene most similar to TRPC6), cause a number of behavioral defects that mirror features seen in ASD patients, including deficits in social interactions (based on courtship behavior), impaired sleep homeostasis (without affecting the circadian control of sleep), hyperactivity in both young and old flies, and defects in learning and memory. Some defects, most notably in sleep, differed in severity between males and females and became normal with age. Interestingly, hyperforin, a TRPC6 agonist and the primary active component of the St. John's wort antidepressant, attenuated many of the deficits expressed by trpγ mutant flies. In summary, our results provide further evidence that the TRPC6 gene is a risk factor for ASD. In addition, they show that the behavioral defects caused by mutations in TRPC6 can be modeled in Drosophila, thereby establishing a paradigm to examine the impact of mutations in other candidate genes.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Animals , Male , Female , Autistic Disorder/genetics , TRPC6 Cation Channel/genetics , Autism Spectrum Disorder/genetics , Drosophila , Drosophila melanogaster/genetics , Mutation/genetics
6.
Hum Mutat ; 43(4): 461-470, 2022 04.
Article in English | MEDLINE | ID: mdl-35094443

ABSTRACT

PAX5 is a transcription factor associated with abnormal posterior midbrain and cerebellum development in mice. PAX5 is highly loss-of-function intolerant and missense constrained, and has been identified as a candidate gene for autism spectrum disorder (ASD). We describe 16 individuals from 12 families who carry deletions involving PAX5 and surrounding genes, de novo frameshift variants that are likely to trigger nonsense-mediated mRNA decay, a rare stop-gain variant, or missense variants that affect conserved amino acid residues. Four of these individuals were published previously but without detailed clinical descriptions. All these individuals have been diagnosed with one or more neurodevelopmental phenotypes including delayed developmental milestones (DD), intellectual disability (ID), and/or ASD. Seizures were documented in four individuals. No recurrent patterns of brain magnetic resonance imaging (MRI) findings, structural birth defects, or dysmorphic features were observed. Our findings suggest that PAX5 haploinsufficiency causes a neurodevelopmental disorder whose cardinal features include DD, variable ID, and/or ASD.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Animals , Autism Spectrum Disorder/genetics , Haploinsufficiency , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , PAX5 Transcription Factor , Phenotype
7.
Hum Genomics ; 15(1): 68, 2021 11 21.
Article in English | MEDLINE | ID: mdl-34802461

ABSTRACT

BACKGROUND: In recent years, several hundred autism spectrum disorder (ASD) implicated genes have been discovered impacting a wide range of molecular pathways. However, the molecular underpinning of ASD, particularly from the point of view of 'brain to behaviour' pathogenic mechanisms, remains largely unknown. METHODS: We undertook a study to investigate patterns of spatiotemporal and cell type expression of ASD-implicated genes by integrating large-scale brain single-cell transcriptomes (> million cells) and de novo loss-of-function (LOF) ASD variants (impacting 852 genes from 40,122 cases). RESULTS: We identified multiple single-cell clusters from three distinct developmental human brain regions (anterior cingulate cortex, middle temporal gyrus and primary visual cortex) that evidenced high evolutionary constraint through enrichment for brain critical exons and high pLI genes. These clusters also showed significant enrichment with ASD loss-of-function variant genes (p < 5.23 × 10-11) that are transcriptionally highly active in prenatal brain regions (visual cortex and dorsolateral prefrontal cortex). Mapping ASD de novo LOF variant genes into large-scale human and mouse brain single-cell transcriptome analysis demonstrate enrichment of such genes into neuronal subtypes and are also enriched for subtype of non-neuronal glial cell types (astrocyte, p < 6.40 × 10-11, oligodendrocyte, p < 1.31 × 10-09). CONCLUSION: Among the ASD genes enriched with pathogenic de novo LOF variants (i.e. KANK1, PLXNB1), a subgroup has restricted transcriptional regulation in non-neuronal cell types that are evolutionarily conserved. This association strongly suggests the involvement of subtype of non-neuronal glial cells in the pathogenesis of ASD and the need to explore other biological pathways for this disorder.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/genetics , Exons , Gene Expression Regulation , Mice , Nerve Tissue Proteins/genetics , Neuroglia/pathology , Receptors, Cell Surface/genetics , Transcriptome/genetics
8.
Am J Med Genet B Neuropsychiatr Genet ; 183(5): 268-276, 2020 07.
Article in English | MEDLINE | ID: mdl-32372567

ABSTRACT

Autism spectrum disorder (ASD) is a relatively common childhood onset neurodevelopmental disorder with a complex genetic etiology. While progress has been made in identifying the de novo mutational landscape of ASD, the genetic factors that underpin the ASD's tendency to run in families are not well understood. In this study, nine extended pedigrees each with three or more individuals with ASD, and others with a lesser autism phenotype, were phenotyped and genotyped in an attempt to identify heritable copy number variants (CNVs). Although these families have previously generated linkage signals, no rare CNV segregated with these signals in any family. A small number of clinically relevant CNVs were identified. Only one CNV was identified that segregated with ASD phenotype; namely, a duplication overlapping DLGAP2 in three male offspring each with an ASD diagnosis. This gene encodes a synaptic scaffolding protein, part of a group of proteins known to be pathologically implicated in ASD. On the whole, however, the heritable nature of ASD in the families studied remains poorly understood.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Copy Number Variations , DNA Mutational Analysis , Gene Dosage , Pedigree , Autistic Disorder/genetics , Child , Child, Preschool , Female , Genetic Linkage , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Infant , Male , Mutation , Nerve Tissue Proteins/genetics , Phenotype , Risk Factors , Synapses/metabolism , Whole Genome Sequencing
9.
Am J Hum Genet ; 94(5): 677-94, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24768552

ABSTRACT

Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.


Subject(s)
Child Development Disorders, Pervasive/genetics , DNA Copy Number Variations , Metabolic Networks and Pathways/genetics , Child , Female , Gene Regulatory Networks , Humans , Male , Multigene Family , Pedigree , Sequence Deletion
10.
Hum Mol Genet ; 23(10): 2752-68, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24381304

ABSTRACT

Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Child Development Disorders, Pervasive/genetics , Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Chromosomes, Human, Pair 9 , DNA Copy Number Variations , Exons , Female , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease , Glycoproteins/metabolism , Humans , Infant , Infant, Newborn , Male , Nerve Tissue Proteins/metabolism , Organ Specificity , Phenotype , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Risk Factors , Sequence Deletion , Transcription Factors/metabolism , Transcription Initiation Site , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Young Adult
11.
Am J Hum Genet ; 93(2): 249-63, 2013 Aug 08.
Article in English | MEDLINE | ID: mdl-23849776

ABSTRACT

Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genetic Predisposition to Disease , Genome , Mutation , Adult , Child , Female , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Humans , Male , Pedigree
12.
Hum Genet ; 134(2): 191-201, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25432440

ABSTRACT

Copy number variation has emerged as an important cause of phenotypic variation, particularly in relation to some complex disorders. Autism spectrum disorder (ASD) is one such disorder, in which evidence is emerging for an etiological role for some rare penetrant de novo and rare inherited copy number variants (CNVs). De novo variation, however, does not always explain the familial nature of ASD, leaving a gap in our knowledge concerning the heritable genetic causes of this disorder. Extended pedigrees, in which several members have ASD, provide an opportunity to investigate inherited genetic risk factors. In this current study, we recruited 19 extended ASD pedigrees, and, using the Illumina HumanOmni2.5 BeadChip, conducted genome-wide CNV interrogation. We found no definitive evidence of an etiological role for segregating CNVs in these pedigrees, and no evidence that linkage signals in these pedigrees are explained by segregating CNVs. However, a small number of putative de novo variants were transmitted from BAP parents to their ASD offspring, and evidence emerged for a rare duplication CNV at 11p13.3 harboring two putative 'developmental/neuropsychiatric' susceptibility gene(s), GSTP1 and NDUFV1.


Subject(s)
Child Development Disorders, Pervasive/genetics , Chromosomes, Human, Pair 11/genetics , Gene Duplication , Genetic Predisposition to Disease , Glutathione S-Transferase pi/genetics , NADH Dehydrogenase/genetics , Pedigree , Databases, Nucleic Acid , Datasets as Topic , Electron Transport Complex I , Female , Genetic Linkage , Genome-Wide Association Study , Humans , Male , Penetrance
13.
JAMA ; 314(9): 895-903, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26325558

ABSTRACT

IMPORTANCE: The use of genome-wide tests to provide molecular diagnosis for individuals with autism spectrum disorder (ASD) requires more study. OBJECTIVE: To perform chromosomal microarray analysis (CMA) and whole-exome sequencing (WES) in a heterogeneous group of children with ASD to determine the molecular diagnostic yield of these tests in a sample typical of a developmental pediatric clinic. DESIGN, SETTING, AND PARTICIPANTS: The sample consisted of 258 consecutively ascertained unrelated children with ASD who underwent detailed assessments to define morphology scores based on the presence of major congenital abnormalities and minor physical anomalies. The children were recruited between 2008 and 2013 in Newfoundland and Labrador, Canada. The probands were stratified into 3 groups of increasing morphological severity: essential, equivocal, and complex (scores of 0-3, 4-5, and ≥6). EXPOSURES: All probands underwent CMA, with WES performed for 95 proband-parent trios. MAIN OUTCOMES AND MEASURES: The overall molecular diagnostic yield for CMA and WES in a population-based ASD sample stratified in 3 phenotypic groups. RESULTS: Of 258 probands, 24 (9.3%, 95%CI, 6.1%-13.5%) received a molecular diagnosis from CMA and 8 of 95 (8.4%, 95%CI, 3.7%-15.9%) from WES. The yields were statistically different between the morphological groups. Among the children who underwent both CMA and WES testing, the estimated proportion with an identifiable genetic etiology was 15.8% (95%CI, 9.1%-24.7%; 15/95 children). This included 2 children who received molecular diagnoses from both tests. The combined yield was significantly higher in the complex group when compared with the essential group (pairwise comparison, P = .002). [table: see text]. CONCLUSIONS AND RELEVANCE: Among a heterogeneous sample of children with ASD, the molecular diagnostic yields of CMA and WES were comparable, and the combined molecular diagnostic yield was higher in children with more complex morphological phenotypes in comparison with the children in the essential category. If replicated in additional populations, these findings may inform appropriate selection of molecular diagnostic testing for children affected by ASD.


Subject(s)
Child Development Disorders, Pervasive/genetics , Exome , Microarray Analysis/methods , Molecular Diagnostic Techniques/methods , Asperger Syndrome/diagnosis , Asperger Syndrome/genetics , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Child , Child Development Disorders, Pervasive/diagnosis , Child Development Disorders, Pervasive/pathology , Child, Preschool , Female , Humans , Male , Microarray Analysis/statistics & numerical data , Molecular Diagnostic Techniques/statistics & numerical data , Mutation , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Phenotype , Sequence Analysis, DNA/methods , Sequence Analysis, Protein/methods
14.
Hum Mol Genet ; 21(21): 4781-92, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22843504

ABSTRACT

While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Alleles , Child , Child Development Disorders, Pervasive/physiopathology , Female , Gene Frequency , Genotype , Humans , Language Development , Male , Polymorphism, Single Nucleotide , Risk Factors
15.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553553

ABSTRACT

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Subject(s)
Cerebral Palsy , DNA Copy Number Variations , Humans , Child , DNA Copy Number Variations/genetics , Cerebral Palsy/genetics , Mutation , Whole Genome Sequencing , Genomics
16.
BMC Med Genomics ; 16(1): 5, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635662

ABSTRACT

BACKGROUND: The X-linked PTCHD1 locus is strongly associated with autism spectrum disorder (ASD). Males who carry chromosome microdeletions of PTCHD1 antisense long non-coding RNA (PTCHD1-AS)/DEAD-box helicase 53 (DDX53) have ASD, or a sub-clinical form called Broader Autism Phenotype. If the deletion extends beyond PTCHD1-AS/DDX53 to the next gene, PTCHD1, which is protein-coding, the individuals typically have ASD and intellectual disability (ID). Three male siblings with a 90 kb deletion that affects only PTCHD1-AS (and not including DDX53) have ASD. We performed a functional analysis of DDX53 to examine its role in NGN2 neurons. METHODS: We used the clustered regularly interspaced short palindromic repeats (CRISPR) gene editing strategy to knock out DDX53 protein by inserting 3 termination codons (3TCs) into two different induced pluripotent stem cell (iPSC) lines. DDX53 CRISPR-edited iPSCs were differentiated into cortical excitatory neurons by Neurogenin 2 (NGN-2) directed differentiation. The functional differences of DDX53-3TC neurons compared to isogenic control neurons with molecular and electrophysiological approaches were assessed. RESULTS: Isogenic iPSC-derived control neurons exhibited low levels of DDX53 transcripts. Transcriptional analysis revealed the generation of excitatory cortical neurons and DDX53 protein was not detected in iPSC-derived control neurons by western blot. Control lines and DDX53-3TC neurons were active in the multi-electrode array, but no overt electrophysiological phenotype in either isogenic line was observed. CONCLUSION: DDX53-3TC mutation does not alter NGN2 neuronal function in these experiments, suggesting that synaptic deficits causing ASD are unlikely in this cell type.


Subject(s)
Autism Spectrum Disorder , DEAD-box RNA Helicases , Induced Pluripotent Stem Cells , Humans , Male , Autism Spectrum Disorder/genetics , DEAD-box RNA Helicases/genetics , Induced Pluripotent Stem Cells/metabolism , Mutation , Neurons/metabolism
17.
medRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234782

ABSTRACT

Autism Spectrum Disorder (ASD) exhibits an ~4:1 male-to-female sex bias and is characterized by early-onset impairment of social/communication skills, restricted interests, and stereotyped behaviors. Disruption of the Xp22.11 locus has been associated with ASD in males. This locus includes the three-exon PTCHD1 gene, an adjacent multi-isoform long noncoding RNA (lncRNA) named PTCHD1-AS (spanning ~1Mb), and a poorly characterized single-exon RNA helicase named DDX53 that is intronic to PTCHD1-AS. While the relationship between PTCHD1/PTCHD1-AS and ASD is being studied, the role of DDX53 has not been examined, in part because there is no apparent functional murine orthologue. Through clinical testing, here, we identified 6 males and 1 female with ASD from 6 unrelated families carrying rare, predicted-damaging or loss-of-function variants in DDX53. Then, we examined databases, including the Autism Speaks MSSNG and Simons Foundation Autism Research Initiative, as well as population controls. We identified 24 additional individuals with ASD harboring rare, damaging DDX53 variations, including the same variants detected in two families from the original clinical analysis. In this extended cohort of 31 participants with ASD (28 male, 3 female), we identified 25 mostly maternally-inherited variations in DDX53, including 18 missense changes, 2 truncating variants, 2 in-frame variants, 2 deletions in the 3' UTR and 1 copy number deletion. Our findings in humans support a direct link between DDX53 and ASD, which will be important in clinical genetic testing. These same autism-related findings, coupled with the observation that a functional orthologous gene is not found in mouse, may also influence the design and interpretation of murine-modelling of ASD.

18.
NPJ Genom Med ; 7(1): 13, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35190550

ABSTRACT

Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders characterized by deficits in social communication and restricted, repetitive patterns of behavior or interests. ASD is highly heritable, but genetically and phenotypically heterogeneous, reducing the power to identify causative genes. We performed whole genome sequencing (WGS) in an ASD cohort of 68 individuals from 22 families enriched for recent shared ancestry. We identified an average of 3.07 million variants per genome, of which an average of 112,512 were rare. We mapped runs of homozygosity (ROHs) in affected individuals and found an average genomic homozygosity of 9.65%, consistent with expectations for multiple generations of consanguineous unions. We identified potentially pathogenic rare exonic or splice site variants in 12 known (including KMT2C, SCN1A, SPTBN1, SYNE1, ZNF292) and 12 candidate (including CHD5, GRB10, PPP1R13B) ASD genes. Furthermore, we annotated noncoding variants in ROHs with brain-specific regulatory elements and identified putative disease-causing variants within brain-specific promoters and enhancers for 5 known ASD and neurodevelopmental disease genes (ACTG1, AUTS2, CTNND2, CNTNAP4, SPTBN4). We also identified copy number variants in two known ASD and neurodevelopmental disease loci in two affected individuals. In total we identified potentially etiological variants in known ASD or neurodevelopmental disease genes for ~61% (14/23) of affected individuals. We combined WGS with homozygosity mapping and regulatory element annotations to identify candidate ASD variants. Our analyses add to the growing number of ASD genes and variants and emphasize the importance of leveraging recent shared ancestry to map disease variants in complex neurodevelopmental disorders.

19.
Nat Commun ; 13(1): 6463, 2022 10 29.
Article in English | MEDLINE | ID: mdl-36309498

ABSTRACT

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/genetics , Canada/epidemiology , Genome , Multifactorial Inheritance/genetics , Whole Genome Sequencing , Genetic Predisposition to Disease
20.
NPJ Genom Med ; 6(1): 91, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34737294

ABSTRACT

Autism Spectrum Disorder (ASD) is genetically complex with ~100 copy number variants and genes involved. To try to establish more definitive genotype and phenotype correlations in ASD, we searched genome sequence data, and the literature, for recurrent predicted damaging sequence-level variants affecting single genes. We identified 18 individuals from 16 unrelated families carrying a heterozygous guanine duplication (c.3679dup; p.Ala1227Glyfs*69) occurring within a string of 8 guanines (genomic location [hg38]g.50,721,512dup) affecting SHANK3, a prototypical ASD gene (0.08% of ASD-affected individuals carried the predicted p.Ala1227Glyfs*69 frameshift variant). Most probands carried de novo mutations, but five individuals in three families inherited it through somatic mosaicism. We scrutinized the phenotype of p.Ala1227Glyfs*69 carriers, and while everyone (17/17) formally tested for ASD carried a diagnosis, there was the variable expression of core ASD features both within and between families. Defining such recurrent mutational mechanisms underlying an ASD outcome is important for genetic counseling and early intervention.

SELECTION OF CITATIONS
SEARCH DETAIL