Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Plant J ; 118(4): 1174-1193, 2024 May.
Article in English | MEDLINE | ID: mdl-38430515

ABSTRACT

Host-induced gene silencing (HIGS) is an inherent mechanism of plant resistance to fungal pathogens, resulting from cross-kingdom RNA interference (RNAi) mediated by small RNAs (sRNAs) delivered from plants into invading fungi. Introducing artificial sRNA precursors into crops can trigger HIGS of selected fungal genes, and thus has potential applications in agricultural disease control. To investigate the HIGS of apple (Malus sp.) during the interaction with Botryosphaeria dothidea, the pathogenic fungus causing apple ring rot disease, we evaluated whether apple miRNAs can be transported into and target genes in B. dothidea. Indeed, miR159a from Malus hupehensis, a wild apple germplasm with B. dothidea resistance, silenced the fungal sugar transporter gene BdSTP. The accumulation of miR159a in extracellular vesicles (EVs) of both infected M. hupehensis and invading B. dothidea suggests that this miRNA of the host is transported into the fungus via the EV pathway. Knockout of BdSTP caused defects in fungal growth and proliferation, whereas knockin of a miR159a-insensitive version of BdSTP resulted in increased pathogenicity. Inhibition of miR159a in M. hupehensis substantially enhanced plant sensitivity to B. dothidea, indicating miR159a-mediated HIGS against BdSTP being integral to apple immunity. Introducing artificial sRNA precursors targeting BdSTP and BdALS, an acetolactate synthase gene, into M. hupehensis revealed that double-stranded RNAs were more potent than engineered MIRNAs in triggering HIGS alternative to those natural of apple and inhibiting infection. These results provide preliminary evidence for cross-kingdom RNAi in the apple-B. dothidea interaction and establish HIGS as a potential disease control strategy in apple.


Subject(s)
Ascomycota , Disease Resistance , Gene Silencing , Malus , MicroRNAs , Plant Diseases , Malus/microbiology , Malus/genetics , Malus/immunology , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , MicroRNAs/genetics , Host-Pathogen Interactions , RNA Interference
2.
Plant Physiol ; 189(3): 1814-1832, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35512059

ABSTRACT

MicroRNA (miRNA)-mediated gene silencing is a master gene regulatory pathway in plant-pathogen interactions. The differential accumulation of miRNAs among plant varieties alters the expression of target genes, affecting plant defense responses and causing resistance differences among varieties. Botryosphaeria dothidea is an important phytopathogenic fungus of apple (Malus domestica). Malus hupehensis (Pamp.) Rehder, a wild apple species, is highly resistant, whereas the apple cultivar "Fuji" is highly susceptible. Here, we identified a 22-nt miRNA candidate named miRcand137 that compromises host resistance to B. dothidea infection and whose processing was affected by precursor sequence variation between M. hupehensis and "Fuji." miRcand137 guides the direct cleavage of and produced target-derived secondary siRNA against Ethylene response factor 14 (ERF14), a transcriptional activator of pathogenesis-related homologs that confers disease resistance to apple. We showed that miRcand137 acts as an inhibitor of apple immunity by compromising ERF14-mediated anti-fungal defense and revealed a negative association between miRcand137 expression and B. dothidea sensitivity in both resistant and susceptible apples. Furthermore, MIRCAND137 was transcriptionally activated by the invading fungi but not by the fungal elicitor, implying B. dothidea induced host miRcand137 as an infection strategy. We propose that the inefficient miRcand137 processing in M. hupehensis decreased pathogen-initiated miRcand137 accumulation, leading to higher resistance against B. dothidea.


Subject(s)
Malus , MicroRNAs , Ascomycota , Malus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Sci ; 341: 112008, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307352

ABSTRACT

miRNAs govern gene expression and regulate plant defense. Alternaria alternata is a destructive fungal pathogen that damages apple. The wild apple germplasm Malus hupehensis is highly resistant to leaf spot disease caused by this fungus. Herein, we elucidated the regulatory and functional role of miR393a in apple resistance against A. alternata by targeting Transport Inhibitor Response 1. Mature miR393 accumulation in infected M. hupehensis increased owing to the transcriptional activation of MIR393a, determined to be a positive regulator of A. alternata resistance to either 'Orin' calli or 'Gala' leaves. 5' RLM-RACE and co-transformation assays showed that the target of miR393a was MhTIR1, a gene encoding a putative F-box auxin receptor that compromised apple immunity. RNA-seq analysis of transgenic calli revealed that MhTIR1 upregulated auxin signaling gene transcript levels and influenced phytohormone pathways and plant-pathogen interactions. miR393a compromised the sensitivity of several auxin-signaling genes to A. alternata infection, whereas MhTIR1 had the opposite effect. Using exogenous indole-3-acetic acid or the auxin synthesis inhibitor L-AOPP, we clarified that auxin enhances apple susceptibility to this pathogen. miR393a promotes SA biosynthesis and impedes pathogen-triggered ROS bursts by repressing TIR1-mediated auxin signaling. We uncovered the mechanism underlying the miR393a-TIR1 module, which interferes with apple defense against A. alternata by modulating the auxin signaling pathway.


Subject(s)
Malus , Malus/metabolism , Alternaria/physiology , Indoleacetic Acids/metabolism , Signal Transduction , Gene Expression Regulation, Plant
4.
Plant Sci ; 330: 111635, 2023 May.
Article in English | MEDLINE | ID: mdl-36787851

ABSTRACT

Apple leaf spot disease caused by Alternaria alternata apple pathotype (A. alternata AP) is one of the most severe fungal diseases affecting apple cultivation. Transcription factors are involved in various disease-resistance responses, and many of them are regulated by miRNAs. Here, we performed RNA-Seq to investigate gene expression changes during the defense response of Malus hupehensis against A. alternata AP. NAC21/22 was induced upon A. alternata AP infection and silenced by miR164 via direct mRNA cleavage. Contrasting expression patterns were noted between mature miR164 and NAC21/22 during infection. Contrary to NAC21/22 silencing, transiently overexpressing NAC21/22 in M. hupehensis alleviated disease symptoms on 'gala' leaves, impeded A. alternata AP growth, and promoted jasmonic acid (JA) signaling-related gene expression. Importantly, transient miR164f overexpression in 'gala' leaves enhanced A. alternata AP sensitivity, due perhaps to NAC21/22 downregulation, whereas miR164 suppression produced an opposite effect. In summary, the miR164-NAC21/22 module plays a pivotal role in apple resistance against A. alternata AP by regulating JA signaling.


Subject(s)
Malus , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Malus/metabolism , Alternaria/physiology
SELECTION OF CITATIONS
SEARCH DETAIL