Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Exp Brain Res ; 242(3): 585-597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38227007

ABSTRACT

Transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (DLPFC) has shown some potential as an adjunctive intervention for ameliorating negative symptoms of schizophrenia, but its efficacy requires optimization. Recently, 'functional targeting' of stimulation holds promise for advancing tDCS efficacy by coupling tDCS with a cognitive task where the target brain regions are activated by that task and further specifically polarized by tDCS.The study used 48-channel functional near infra-red spectroscopy (fNIRS) aiming to determine a cognitive task that can effectively induce a cortical activation of the left DLPFC in schizophrenia patients with predominant negative symptoms before running a tDCS trial. Sixty schizophrenia patients with predominant negative symptoms completed measures of clinical and psychosocial functioning characteristics and assessments across cognitive domains. Hemodynamic changes during n-back working memory tasks with different cognitive loads (1-back and 2-back) and verbal fluency test (VFT) were measured using fNIRS. For n-back tasks, greater signal changes were found when the task required elevated cognitive load. One sample t-test revealed that only 2-back task elicited significant activation in left DLPFC (t = 4.23, FDR-corrected p = 0.0007). During VFT, patients failed to show significant task-related activity in left DLPFC (one sample t-test, t = -0.25, FDR-corrected p > 0.05). Our study implies that 2-back task can effectively activate left DLPFC in schizophrenia patients with predominant negative symptoms. This neurophysiologically-validated task is considered highly potential to be executed in conjunction with high-definition tDCS for "functional targeting" of the left DLPFC to treat negative symptoms in a double-blind randomized sham-control trial, registered on ClinicalTrials.gov Registry (ID: NCT05582980).


Subject(s)
Schizophrenia , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Dorsolateral Prefrontal Cortex , Schizophrenia/therapy , Prefrontal Cortex/physiology , Spectrum Analysis , Double-Blind Method
2.
Ecotoxicol Environ Saf ; 273: 116098, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38368757

ABSTRACT

Plastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases. In this article, we evaluated how PS-MPs affected tubular cells and fibroblasts. The results demonstrated that PS-MPs increased EV production in human tubular cells and caused endoplasmic reticulum (ER) stress-related proteins without inducing inflammation-related proteins in human tubular cells. The uptake of PS-MPs and incubation with the conditioned medium of PS-MPs induced reactive oxygen species (ROS) production and ER stress-related proteins in fibroblast cells. The fibroblast cells treated with the conditioned medium of PS-MPs also increased the expression of fibrosis-related proteins. Our findings suggested that the expression of EV-related markers increased in tubular cells via Beclin 1 after PS-MP treatment. In addition, PS-MPs induced ROS production in vitro and in vivo. We found that PS-MPs also altered the expression of EV markers in urine, and CD63 expression was also increased in vitro and in vivo after PS-MP treatment. In conclusion, PS-MP-induced EVs lead to ER stress-related proteins, ROS production and fibrosis-related proteins in tubular cells and fibroblasts.


Subject(s)
Extracellular Vesicles , Microplastics , Animals , Humans , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Culture Media, Conditioned , Reactive Oxygen Species , Kidney , Fibroblasts , Fibrosis
3.
Ecotoxicol Environ Saf ; 258: 114987, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37172407

ABSTRACT

The burning incense (BI) behavior could be widely observed in Asia families. Incense sticks are often believed to be made from natural herbs and powders, and to have minimal impact on human health; however, there is limited research to support this claim. The current study aimed to identify the components of BI within the particulate matter 2.5 µm (PM2.5) range and explore if BI has bio-toxicity effects on rat astrocytes (CTX-TNA2). The study also examined the protective effects and underlying molecular mechanisms of tanshinone IIA, a primary lipid-soluble compound found in the herb danshen (Salvia miltiorrhiza Bunge), which has been shown to benefit the central nervous system. Results showed that despite the differences in BI components compared to the atmospheric particulate matter (PM) standards, BI still had a bio-toxicity on astrocytes. BI exposure caused early and late apoptosis, reactive oxygen species (ROS) production, MAPKs (JNK, p38, and ERK), and Akt signaling activation, and inflammation-related proteins (cPLA2, COX-2, HO-1, and MMP-9) increases. Our results further exhibit that the tanshinone IIA pre-treatment could significantly avoid the BI-induced apoptosis and inflammatory signals on rat astrocytes. These findings suggest that BI exposure may cause oxidative stress in rat astrocytes and increase inflammation-related proteins and support the potential of tanshinone IIA as a candidate for preventing BI-related adverse health effects.


Subject(s)
Abietanes , Astrocytes , Rats , Animals , Humans , Abietanes/pharmacology , Oxidative Stress , Inflammation/chemically induced
4.
Medicina (Kaunas) ; 59(4)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37109695

ABSTRACT

Background and Objectives: Attentional dysfunction has long been viewed as one of the fundamental underlying cognitive deficits in schizophrenia. There is an urgent need to understand its neural underpinning and develop effective treatments. In the process of attention, neural oscillation has a central role in filtering information and allocating resources to either stimulus-driven or goal-relevant objects. Here, we asked if resting-state EEG connectivity correlated with attentional performance in schizophrenia patients. Materials and Methods: Resting-state EEG recordings were obtained from 72 stabilized patients with schizophrenia. Lagged phase synchronization (LPS) was used to measure whole-brain source-based functional connectivity between 84 intra-cortical current sources determined by eLORETA (exact low-resolution brain electromagnetic tomography) for five frequencies. The Conners' Continuous Performance Test-II (CPT-II) was administered for evaluating attentional performance. Linear regression with a non-parametric permutation randomization procedure was used to examine the correlations between the whole-brain functional connectivity and the CPT-II measures. Results: Greater beta-band right hemispheric fusiform gyrus (FG)-lingual gyrus (LG) functional connectivity predicted higher CPT-II variability scores (r = 0.44, p < 0.05, corrected), accounting for 19.5% of variance in the CPT-II VAR score. Greater gamma-band right hemispheric functional connectivity between the cuneus (Cu) and transverse temporal gyrus (TTG) and between Cu and the superior temporal gyrus (STG) predicted higher CPT-II hit reaction time (HRT) scores (both r = 0.50, p < 0.05, corrected), accounting for 24.6% and 25.1% of variance in the CPT-II HRT score, respectively. Greater gamma-band right hemispheric Cu-TTG functional connectivity predicted higher CPT-II HRT standard error (HRTSE) scores (r = 0.54, p < 0.05, corrected), accounting for 28.7% of variance in the CPT-II HRTSE score. Conclusions: Our study indicated that increased right hemispheric resting-state EEG functional connectivity at high frequencies was correlated with poorer focused attention in schizophrenia patients. If replicated, novel approaches to modulate these networks may yield selective, potent interventions for improving attention deficits in schizophrenia.


Subject(s)
Cognition Disorders , Schizophrenia , Humans , Schizophrenia/complications , Electroencephalography/methods , Brain , Temporal Lobe , Magnetic Resonance Imaging
5.
Molecules ; 27(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056691

ABSTRACT

Osteosarcoma, a primary bone tumor, responds poorly to chemotherapy and radiation therapy in children and young adults; hence, as the basis for an alternative treatment, this study investigated the cytotoxic and antiproliferative effects of naringenin on osteosarcoma cell lines, HOS and U2OS, by using cell counting kit-8 and colony formation assays. DNA fragmentation and the increase in the G2/M phase in HOS and U2OS cells upon treatment with various naringenin concentrations were determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and Annexin V/propidium iodide double staining, respectively. Flow cytometry was performed, and 2',7'-dichlorodihydrofluorescein diacetate, JC-1, and Fluo-4 AM ester probes were examined for reactive oxygen species (ROS) generation, mitochondrial membrane potential, and intracellular calcium levels, respectively. Caspase activation, cell cycle, cytosolic and mitochondrial, and autophagy-related proteins were determined using western blotting. The results indicated that naringenin significantly inhibited viability and proliferation of osteosarcoma cells in a dose-dependent manner. In addition, naringenin induced cell cycle arrest in osteosarcoma cells by inhibiting cyclin B1 and cyclin-dependent kinase 1 expression and upregulating p21 expression. Furthermore, naringenin significantly inhibited the growth of osteosarcoma cells by increasing the intracellular ROS level. Naringenin induced endoplasmic reticulum (ER) stress-mediated apoptosis through the upregulation of ER stress markers, GRP78 and GRP94. Naringenin caused acidic vesicular organelle formation and increased autophagolysosomes, microtubule-associated protein-light chain 3-II protein levels, and autophagy. The findings suggest that the induction of cell apoptosis, cell cycle arrest, and autophagy by naringenin through mitochondrial dysfunction, ROS production, and ER stress signaling pathways contribute to the antiproliferative effect of naringenin on osteosarcoma cells.


Subject(s)
Reactive Oxygen Species
6.
Neurobiol Dis ; 130: 104511, 2019 10.
Article in English | MEDLINE | ID: mdl-31212068

ABSTRACT

Although ß-amyloid plaques are a well-recognized hallmark of Alzheimer's disease (AD) neuropathology, no drugs reducing amyloid burden have shown efficacy in clinical trials, suggesting that once AD symptoms emerge, disease progression becomes independent of Aß production. Reactive astrocytes are another neuropathological feature of AD, where there is an emergence of neurotoxic (A1) reactive astrocytes. We find that serine racemase (SR), the neuronal enzyme that produces the N-methyl-d-aspartate receptor (NMDAR) co-agonist d-serine, is robustly expressed in A1-reactive neurotoxic astrocytes in the hippocampus and entorhinal cortex of AD subjects and an AD rat model. Furthermore, we observe intracellular signaling changes consistent with increased extra-synaptic NMDAR activation, excitotoxicity and decreased neuronal survival. Thus, reducing neurotoxic d-serine release from A1 inflammatory astrocytes could have therapeutic benefit for mild to advanced AD, when anti-amyloid strategies are ineffective.


Subject(s)
Alzheimer Disease/enzymology , Astrocytes/enzymology , Entorhinal Cortex/enzymology , Hippocampus/enzymology , Racemases and Epimerases/metabolism , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Humans , Rats , Rats, Transgenic
7.
Addict Biol ; 23(2): 569-584, 2018 03.
Article in English | MEDLINE | ID: mdl-28436559

ABSTRACT

Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R-expressing or D2R-expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP-positive and Cre-positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4-34 percent of neurons co-expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R-positive and D1R-negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a-Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R-positive and D2R-positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R-expressing or D2R-expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.


Subject(s)
Brain/metabolism , Dopaminergic Neurons/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Amygdala/cytology , Amygdala/metabolism , Animals , Brain/cytology , Corpus Striatum/cytology , Corpus Striatum/metabolism , Dopaminergic Neurons/cytology , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Hippocampus/metabolism , Integrases/genetics , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Models, Animal , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism
8.
Am J Pathol ; 185(12): 3202-10, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26475415

ABSTRACT

The Janus kinase (JAK) system is involved in numerous cell signaling processes and is highly expressed in cardiac tissue. The JAK isoform JAK2 is activated by numerous factors known to influence cardiac function and pathologic conditions. However, although abundant, the role of JAK2 in the regulation or maintenance of cardiac homeostasis remains poorly understood. Using the Cre-loxP system, we generated a cardiac-specific deletion of Jak2 in the mouse to assess the effect on cardiac function with animals followed up for a 4-month period after birth. These animals had marked mortality during this period, although at 4 months mortality in male mice (47%) was substantially higher compared with female mice (30%). Both male and female cardiac Jak2-deleted mice had hypertrophy, dilated cardiomyopathy, and severe left ventricular dysfunction, including a marked reduction in ejection fractions as assessed by serial echocardiography, although the responses in females were somewhat less severe. Defective cardiac function was associated with altered protein levels of sarcoplasmic reticulum calcium-regulatory proteins particularly in hearts from male mice that had depressed levels of SERCA2 and phosphorylated phospholamban. In contrast, SERCA2 was unchanged in hearts of female mice, whereas phosphorylated phospholamban was increased. Our findings suggest that cardiac JAK2 is critical for maintaining normal heart function, and its ablation produces a severe pathologic phenotype composed of myocardial remodeling, heart failure, and pronounced mortality.


Subject(s)
Cardiomegaly/enzymology , Janus Kinase 2/physiology , Ventricular Dysfunction, Left/enzymology , Ventricular Remodeling/physiology , Animals , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Female , Gene Deletion , Genotype , Janus Kinase 2/deficiency , Janus Kinase 2/genetics , Male , Mice, Knockout , Ventricular Dysfunction, Left/genetics , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology , Ventricular Remodeling/genetics
9.
Can J Physiol Pharmacol ; 94(12): 1325-1335, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27797280

ABSTRACT

There is increasing evidence for a beneficial effect of ginseng on cardiac pathology. Here, we determined whether North American ginseng can modulate the deleterious effects of the ß-adrenoceptor agonist isoproterenol on cardiac hypertrophy and function using in vitro and in vivo approaches. Isoproterenol was administered for 2 weeks at either 25 mg/kg per day or 50 mg/kg per day (ISO25 or ISO50) via a subcutaneously implanted osmotic mini-pump to either control rats or those receiving ginseng (0.9 g/L in the drinking water ad libitum). Isoproterenol produced time- and dose-dependent left ventricular dysfunction, although these effects were attenuated by ginseng. Improved cardiac functions were associated with reduced heart masses, as well as prevention in the upregulation of the hypertrophy-related fetal gene expression. Lung masses were similarly attenuated, suggesting reduced pulmonary congestion. In in vitro studies, ginseng (10 µg/mL) completely suppressed the hypertrophic response to 1 µmol/L isoproterenol in terms of myocyte surface area, as well as reduction in the upregulation of fetal gene expression. These effects were associated with attenuation in both protein kinase A and cAMP response element-binding protein phosphorylation. Ginseng attenuates adverse cardiac adrenergic responses and, therefore, may be an effective therapy to reduce hypertrophy and heart failure associated with excessive catecholamine production.


Subject(s)
Adrenergic beta-Agonists/toxicity , Cardiomegaly/prevention & control , Plant Extracts/therapeutic use , Saponins/therapeutic use , Signal Transduction/drug effects , Ventricular Dysfunction, Left/prevention & control , Animals , Cardiomegaly/chemically induced , Cardiomegaly/diagnostic imaging , Dose-Response Relationship, Drug , Isoproterenol/toxicity , Male , Panax , Plant Extracts/isolation & purification , Plant Roots , Rats , Rats, Sprague-Dawley , Saponins/isolation & purification , Signal Transduction/physiology , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/diagnostic imaging
10.
J Neurochem ; 135(4): 727-41, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26337027

ABSTRACT

AMP-activated protein kinase (AMPK) is a cellular energy sensor, which is activated when the intracellular ATP production decreases. The activities of AMPK display circadian rhythms in various organs and tissues, indicating that AMPK is involved in the circadian regulation of cellular metabolism. In vertebrate retina, the circadian clocks regulate many aspects of retinal function and physiology, including light/dark adaption, but whether and how AMPK was involved in the retinal circadian rhythm was not known. We hypothesized that the activation of AMPK (measured as phosphorylated AMPK) in the retina was under circadian control, and AMPK might interact with other intracellular signaling molecules to regulate photoreceptor physiology. We combined ATP assays, western blots, immunostaining, patch-clamp recordings, and pharmacological treatments to decipher the role of AMPK in the circadian regulation of photoreceptor physiology. We found that the overall retinal ATP content displayed a diurnal rhythm that peaked at early night, which was nearly anti-phase to the diurnal and circadian rhythms of AMPK phosphorylation. AMPK was also involved in the circadian phase-dependent regulation of photoreceptor L-type voltage-gated calcium channels (L-VGCCs), the ion channel essential for sustained neurotransmitter release. The activation of AMPK dampened the L-VGCC currents at night with a corresponding decrease in protein expression of the L-VGCCα1 pore-forming subunit, while inhibition of AMPK increased the L-VGCC current during the day. AMPK appeared to be upstream of extracellular-signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Hence, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology. We found that in chicken embryonic retina, the activation of AMP-activated protein kinase (AMPK) is under circadian control and anti-phase to the retinal ATP rhythm. While ATP content is higher at night, phosphorylated AMPK (pAMPK) is higher during the day. AMPK appears to be upstream of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), and mammalian target of rapamycin complex 1 (mTORC1) but downstream of adenylyl cyclase in regulating the circadian rhythm of L-VGCCs. Therefore, as a cellular energy sensor, AMPK integrates into the cell signaling network to regulate the circadian rhythm of photoreceptor physiology.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Calcium Channels, L-Type/metabolism , Circadian Rhythm/physiology , Photoreceptor Cells/metabolism , Retina/cytology , Adenosine Triphosphate/metabolism , Adjuvants, Immunologic/pharmacology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cells, Cultured , Chick Embryo , Colforsin/pharmacology , Electric Stimulation , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Imidazoles/pharmacology , Imines/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Oxazines/pharmacology , Patch-Clamp Techniques , Photoreceptor Cells/drug effects , Retina/embryology , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL