Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Anal Chem ; 88(24): 12371-12379, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28193011

ABSTRACT

Sensitive determination of the pharmacokinetics of PEGylated molecules can accelerate the process of drug development. Here, we combined different anti-PEG Fab expressing 293T cells as capture cells (293T/3.3, 293T/6.3, and 293T/15-2b cells) with four detective anti-PEG antibodies (3.3, 6.3, 7A4, or 15-2b) to optimize an anti-PEG cell-based sandwich ELISA. Then, we quantified free PEG (mPEG2K-NH2 and mPEG5K-NH2) or PEG-conjugated small molecules (mPEG5K-biotin and mPEG5K-NIR797), proteins (PegIntron and Pegasys), and nanoparticles (Liposomal-Doxorubicin and quantum-dots). The combination of 293T/15-2b cells and the 7A4 detection antibody was best sensitivity for free PEG, PEG-like molecules, and PEGylated proteins with detection at ng mL-1 levels. On the other hand, 293T/3.3 cells combined with the 15-2b antibody had the highest sensitivity for quantifying Lipo-Dox at 2 ng mL-1. All three types of anti-PEG cells combined with the 15-2b antibody had high sensitivity for quantum dot quantification down to 7 pM. These results suggest that the combination of 293T/15-2b cells and 7A4 detection antibody is the optimal pair for sensitive quantification of free PEG, PEG-like molecules, and PEGylated proteins, whereas the 293T/3.3 cells combined with 15-2b are more suitable for quantifying PEGylated nanoparticles. The optimized anti-PEG cell-based sandwich ELISA can provide a sensitive, precise, and convenient tool for the quantification of a range of PEGylated molecules.


Subject(s)
Biotin/analogs & derivatives , Immunoglobulin Fab Fragments/chemistry , Interferon-alpha/analysis , Polyethylene Glycols/analysis , Doxorubicin/analogs & derivatives , Doxorubicin/analysis , Enzyme-Linked Immunosorbent Assay/methods , HEK293 Cells , Humans , Interferon alpha-2 , Nanoparticles/analysis , Quantum Dots/analysis , Recombinant Proteins/analysis
2.
J Virol ; 89(22): 11406-19, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26339052

ABSTRACT

UNLABELLED: The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes. IMPORTANCE: Patients infected with certain genotypes of HBV have a lower risk of hepatocellular carcinoma and exhibit a more favorable response to antiviral therapy than patients infected with other HBV genotypes. Using cultured human hepatoma cells as a model of HBV infection, we found that the expression of 2.2DS-RNA caused a decrease in HBV replication. In cultured cells, the ectopic expression of 2.2DS-RNA obviously reduced the intracellular levels of HBV mRNAs. Our analysis of the 2.2DS-RNA-mediated suppression of viral RNA expression showed that 2.2DS-RNA inhibited transcription via binding to the TATA-binding protein and stress granule proteins. Our findings suggest that the 2.2DS-RNA acts as a suppressive noncoding RNA that modulates HBV replication, which may in turn influence the development of chronic hepatitis B.


Subject(s)
Hepatitis B virus/genetics , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/metabolism , TATA-Box Binding Protein/metabolism , Virus Replication/genetics , 3T3 Cells , Animals , Binding Sites/genetics , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/virology , Carrier Proteins/metabolism , Cell Line, Tumor , DNA Helicases , Gene Expression Regulation, Viral , HEK293 Cells , Hep G2 Cells , Hepatitis B Surface Antigens/metabolism , Hepatitis B e Antigens/metabolism , Hepatitis B, Chronic/virology , Humans , Liver Neoplasms/epidemiology , Liver Neoplasms/virology , Mice , Plasmids/genetics , Poly(A)-Binding Protein I/metabolism , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Precursors/biosynthesis , RNA Recognition Motif Proteins , RNA Splicing/genetics , RNA, Double-Stranded/biosynthesis , RNA, Viral/genetics , Transcription, Genetic/genetics
3.
J Biomed Sci ; 18: 96, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22208719

ABSTRACT

BACKGROUND: The covalently closed-circular DNA (cccDNA) of hepatitis B virus (HBV) is associated with viral persistence in HBV-infected hepatocytes. However, the regulation of cccDNA and its transcription in the host cells at different growth stages is not well understood. METHODS: We took advantages of a stably HBV-producing cell line, 1.3ES2, and examine the dynamic changes of HBV cccDNA, viral transcripts, and viral replication intermediates in different cellular growth stages. RESULTS: In this study, we showed that cccDNA increased suddenly in the initial proliferation phase of cell growth, probably attributable to its nuclear replenishment by intracellular nucleocapsids. The amount of cccDNA then decreased dramatically in the cells during their exponential proliferation similar to the loss of extrachromosomal plasmid DNA during cell division, after which it accumulated gradually while the host cells grew to confluency. We found that cccDNA was reduced in dividing cells and could be removed when proliferating cells were subjected to long term of lamivudine (3TC) treatment. The amounts of viral replicative intermediates were rapidly reduced in these proliferating cells and were significantly increased after cells reaching confluency. The expression levels of viral transcripts were increased in parallel with the elevated expression of hepatic transcription factors (HNF4α, CEBPα, PPARα, etc.) during cell growth confluency. The HBV transcripts were transcribed from both integrated viral genome and cccDNA, however the transcriptional abilities of cccDNA was less efficient then that from integrated viral genome in all cell growth stages. We also noted increases in the accumulation of intracellular viral particles and the secretion of mature virions as the cells reached confluency and ceased to grow. CONCLUSIONS: Based on the dynamics of HBV replication, we propose that HBV replication is modulated differently in the different stages of cell growth, and can be divided into three phases (initial proliferation phase, exponential proliferation phase and growth confluency phase) according to the cell growth curve. The regulation of cccDNA in different cell growth phase and its importance regarding HBV replication are discussed.


Subject(s)
DNA, Circular/metabolism , DNA, Viral/metabolism , Hepatitis B virus/genetics , Transcription, Genetic , Cell Proliferation , DNA Replication , Hepatitis B virus/metabolism , Plasmids , Virus Replication/genetics
4.
Acta Biomater ; 111: 386-397, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32417267

ABSTRACT

Targeted antibodies and methoxy-PEGylated nanocarriers have gradually become a mainstream of cancer therapy. To increase the anti-cancer effects of targeted antibodies combined with mPEGylated liposomes (mPEG-liposomes), we describe a bispecific antibody in which an anti-methoxy-polyethylene glycol scFv (αmPEG scFv) was fused to the C-terminus of an anti-HER2 (αHER2) antibody to generate a HER2 × mPEG BsAb that retained the original efficacy of a targeted antibody while actively attracting mPEG-liposomes to accumulate at tumor sites. HER2 ×mPEG BsAb can simultaneously bind to HER2-high expressing MCF7/HER2 tumor cells and mPEG molecules on mPEG-liposomal doxorubicin (Lipo-Dox). Pre-incubation of HER2 × mPEG BsAb with cells increased the endocytosis of Lipo-DiD and enhanced the cytotoxicity of Lipo-Dox to MCF7/HER2 tumor cells. Furthermore, pre-treatment of HER2 × mPEG BsAb enhanced the tumor accumulation and retention of Lipo-DiR 2.2-fold in HER2-high expressing MCF7/HER2 tumors as compared to HER2-low expressing MCF7/neo1 tumors. Importantly, HER2 × mPEG BsAb plus Lipo-Dox significantly suppressed tumor growth as compared to control BsAb plus Lipo-Dox in MCF7/HER2 tumor-bearing mice. These results indicate that HER2 × mPEG BsAb can enhance tumor accumulation of mPEG-liposomes to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy. STATEMENT OF SIGNIFICANCE: Antibody targeted therapy and PEGylated drugs have gradually become the mainstream of cancer therapy. To enhance the anti-cancer effects of targeted antibodies combined with PEGylated drugs is very important. To this aim, we fused an anti-PEG scFv to the C-terminal of HER2 targeted antibodies to generate a HER2×mPEG bispecific antibody (BsAb) to retain the original efficacy of targeted antibody whilst actively attract mPEG-liposomal drugs to accumulate at tumor sites. The present study demonstrates pre-treatment of HER2×mPEG BsAb can enhance tumor accumulation of mPEG-liposomal drugs to improve the therapeutic efficacy of combination treatment. Anti-mPEG scFv can be fused to any kind of targeted antibody to generate BsAbs to actively attract mPEG-drugs and improve anti-cancer efficacy.


Subject(s)
Antibodies, Bispecific , Liposomes , Animals , Antibodies, Bispecific/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , MCF-7 Cells , Mice , Polyethylene Glycols , Receptor, ErbB-2
5.
Sci Rep ; 9(1): 9931, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31289297

ABSTRACT

Membrane antigens (mAgs) are important targets for the development of antibody (Ab) drugs. However, native mAgs are not easily prepared, causing difficulties in acquiring functional Abs. In this study, we present a platform in which human mAgs were expressed in native form on cell adjuvants made with membrane-bound cytokines that were then used immunize syngeneic mice directly. The membrane-bound cytokines were used as immune stimulators to enhance specific Ab responses against the desired mAgs. Then, mAgs-expressing xenogeneic cells were used for Ab characterization to reduce non-specific binding. We established cell adjuvants by expressing membrane-bound cytokines (mIL-2, mIL-18, or mGM-CSF) on BALB/3T3 cells, which were effective in stimulating splenocyte proliferation in vitro. We then transiently expressed ecotropic viral integration site 2B (EVI2B) on the adjuvants and used them to directly immunize BALB/c mice. We found that 3T3/mGM-CSF cells stimulated higher specific anti-EVI2B Ab response in the immunized mice than the other cell adjuvants. A G-protein coupled receptor (GPCR), CXCR2, was then transiently expressed on 3T3/mGM-CSF cell adjuvant to immunize mice. The immune serum exhibited relatively higher binding to xenogeneic 293 A/CXCR2 cells than 293 A cells (~3.5-fold). Several hybridoma clones also exhibited selective binding to 293 A/CXCR2 cells. Therefore, the cell adjuvant could preserve the native conformation of mAgs and exhibit anti-mAg Ab stimulatory ability, providing a more convenient and effective method to generate functional Abs, thus possibly accelerating Ab drug development.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Monoclonal/immunology , Cell Membrane/metabolism , Receptors, Interleukin-8B/immunology , Animals , Antibody Formation , Cell Membrane/immunology , Cytokines/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Immunization , Mice , Mice, Inbred BALB C , Protein Binding , Receptors, Interleukin-8B/metabolism
6.
Sci Rep ; 7(1): 11587, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912497

ABSTRACT

Systemic injection of therapeutic antibodies may cause serious adverse effects due to on-target toxicity to the antigens expressed in normal tissues. To improve the targeting selectivity to the region of disease sites, we developed protease-activated pro-antibodies by masking the binding sites of antibodies with inhibitory domains that can be removed by proteases that are highly expressed at the disease sites. The latency-associated peptide (LAP), C2b or CBa of complement factor 2/B were linked, through a substrate peptide of matrix metalloproteinase-2 (MMP-2), to an anti-epidermal growth factor receptor (EGFR) antibody and an anti-tumor necrosis factor-α (TNF-α) antibody. Results showed that all the inhibitory domains could be removed by MMP-2 to restore the binding activities of the antibodies. LAP substantially reduced (53.8%) the binding activity of the anti-EGFR antibody on EGFR-expressing cells, whereas C2b and CBa were ineffective (21% and 9.3% reduction, respectively). Similarly, LAP also blocked 53.9% of the binding activity of the anti-TNF-α antibody. Finally, molecular dynamic simulation showed that the masking efficiency of LAP, C2b and CBa was 33.7%, 10.3% and -5.4%, respectively, over the binding sites of the antibodies. This strategy may aid in designing new protease-activated pro-antibodies that attain high therapeutic potency yet reduced systemic on-target toxicity.


Subject(s)
Antibodies, Monoclonal/chemistry , Binding Sites , Peptide Hydrolases/chemistry , Protein Interaction Domains and Motifs , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibody Specificity/immunology , Enzyme Activation/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , Humans , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/chemistry
7.
Sci Rep ; 6: 39119, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27991598

ABSTRACT

Attachment of polyethylene glycol (PEG) molecules to nanoparticles (PEGylation) is a widely-used method to improve the stability, biocompatibility and half-life of nanomedicines. However, the evaluation of the PEGylated nanomedicine pharmacokinetics (PK) requires the decomposition of particles and purification of lead compounds before analysis by high performance liquid chromatography (HPLC), mass spectrometry, etc. Therefore, a method to directly quantify un-decomposed PEGylated nanoparticles is needed. In this study, we developed anti-PEG bioparticles and combined them with anti-PEG antibodies to generate a quantitative enzyme-linked immunosorbent assay (ELISA) for direct measurement of PEGylated nanoparticles without compound purification. The anti-PEG bioparticles quantitative ELISA directly quantify PEG-quantum dots (PEG-QD), PEG-stabilizing super-paramagnetic iron oxide (PEG-SPIO), Lipo-Dox and PEGASYS and the detection limits were 0.01 nM, 0.1 nM, 15.63 ng/mL and 0.48 ng/mL, respectively. Furthermore, this anti-PEG bioparticle-based ELISA tolerated samples containing up to 10% mouse or human serum. There was no significant difference in pharmacokinetic studies of radiolabeled PEG-nanoparticles (Nano-X-111In) through anti-PEG bioparticle-based ELISA and a traditional gamma counter. These results suggest that the anti-PEG bioparticle-based ELISA may provide a direct and effective method for the quantitation of any whole PEGylated nanoparticles without sample preparation.


Subject(s)
Antibodies/metabolism , Nanoparticles/chemistry , Polyethylene Glycols/analysis , Serum/chemistry , Animals , Biotinylation , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Polyethylene Glycols/chemistry , Quantum Dots
8.
PLoS One ; 11(8): e0160418, 2016.
Article in English | MEDLINE | ID: mdl-27494183

ABSTRACT

Molecular weight markers that can tolerate denaturing conditions and be auto-detected by secondary antibodies offer great efficacy and convenience for Western Blotting. Here, we describe M&R LE protein markers which contain linear epitopes derived from the heavy chain constant regions of mouse and rabbit immunoglobulin G (IgG Fc LE). These markers can be directly recognized and stained by a wide range of anti-mouse and anti-rabbit secondary antibodies. We selected three mouse (M1, M2 and M3) linear IgG1 and three rabbit (R1, R2 and R3) linear IgG heavy chain epitope candidates based on their respective crystal structures. Western blot analysis indicated that M2 and R2 linear epitopes are effectively recognized by anti-mouse and anti-rabbit secondary antibodies, respectively. We fused the M2 and R2 epitopes (M&R LE) and incorporated the polypeptide in a range of 15-120 kDa auto-detecting markers (M&R LE protein marker). The M&R LE protein marker can be auto-detected by anti-mouse and anti-rabbit IgG secondary antibodies in standard immunoblots. Linear regression analysis of the M&R LE protein marker plotted as gel mobility versus the log of the marker molecular weights revealed good linearity with a correlation coefficient R2 value of 0.9965, indicating that the M&R LE protein marker displays high accuracy for determining protein molecular weights. This accurate, regular and auto-detected M&R LE protein marker may provide a simple, efficient and economical tool for protein analysis.


Subject(s)
Antibodies/analysis , Blotting, Western/methods , Epitopes/immunology , Animals , Antibodies/immunology , Biomarkers/analysis , Epitopes/genetics , Immunoglobulin G/genetics , Mice , Molecular Weight , Rabbits
9.
PLoS One ; 10(7): e0133470, 2015.
Article in English | MEDLINE | ID: mdl-26186692

ABSTRACT

The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies.


Subject(s)
Cancer Vaccines/immunology , Carcinogenesis/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interleukin-18/immunology , Animals , Cancer Vaccines/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-18/genetics , Mice , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
10.
PLoS One ; 9(5): e97367, 2014.
Article in English | MEDLINE | ID: mdl-24824752

ABSTRACT

Single-chain variable fragments (scFvs) serve as an alternative to full-length monoclonal antibodies used in research and therapeutic and diagnostic applications. However, when recombinant scFvs are overexpressed in bacteria, they often form inclusion bodies and exhibit loss of function. To overcome this problem, we developed an scFv secretion system in which scFv was fused with osmotically inducible protein Y (osmY), a bacterial secretory carrier protein, for efficient protein secretion. Anti-EGFR scFv (αEGFR) was fused with osmY (N- and C-termini) and periplasmic leader sequence (pelB) to generate αEGFR-osmY, osmY-αEGFR, and pelB-αEGFR (control), respectively. In comparison with the control, both the osmY-fused αEGFR scFvs were soluble and secreted into the LB medium. Furthermore, the yield of soluble αEGFR-osmY was 20-fold higher, and the amount of secreted protein was 250-fold higher than that of osmY-αEGFR. In addition, the antigen-binding activity of both the osmY-fused αEGFRs was 2-fold higher than that of the refolded pelB-αEGFR from inclusion bodies. Similar results were observed with αTAG72-osmY and αHer2-osmY. These results suggest that the N-terminus of osmY fused with scFv produces a high yield of soluble, functional, and secreted scFv, and the osmY-based bacterial secretion system may be used for the large-scale industrial production of low-cost αEGFR protein.


Subject(s)
Bacterial Secretion Systems/immunology , Bioreactors , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Industrial Microbiology/methods , Periplasmic Binding Proteins/metabolism , Single-Chain Antibodies/biosynthesis , Blotting, Western , DNA Primers/genetics , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/metabolism , Escherichia coli/genetics , Protein Sorting Signals/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism
11.
Virus Res ; 174(1-2): 18-26, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23501362

ABSTRACT

Hepatitis B virus (HBV) is generally classified into eight genotypes (A to H) based on genomic sequence divergence. The sequence variation among the different HBV genotypes suggests that the spliced RNAs should be different from genotype to genotype. However, the cis-acting element involved in the modulation of the distinct expression profiles of spliced HBV RNAs remains unidentified. Moreover, the biological role of splicing in the life cycle of HBV is not yet understood. In this study, spliced RNAs generated from genotypes A and D were carefully characterized in transfected HepG2 cells. The species and frequency of the spliced RNAs were dramatically different in the two genotypes. Of note, a population of multiply spliced RNAs with intron 2067-2350 excision was identified in HBV genotype A-transfected HepG2 cells, but not in genotype D transfected HepG2 cells. Further, we found a single nucleotide difference (2335) located within the polypyrimidine tract of the splice acceptor site 2350 between the two genotypes, and a single base substitution at 2335 was able to convert the splicing pattern of genotype D (or genotype A) to that of genotype A (or genotype D). These findings suggest that different unique splice sites may be preferentially used in different HBV genotypes resulting in distinct populations of spliced RNAs. The possible significance of the distinct spliced RNAs generated from the different HBV genotypes in HBV infection is discussed.


Subject(s)
Hepatitis B virus/genetics , Polymorphism, Single Nucleotide , RNA Splicing , RNA, Messenger/genetics , RNA, Viral/genetics , Cell Line , Genotype , Hepatocytes/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL