Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Opt Express ; 32(8): 14211-14222, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859373

ABSTRACT

Pulse-compression gratings for high-power, short-pulse laser systems are exposed to high electric fields that are further enhanced locally due to their 2D nanostructured surface. This makes them vulnerable to laser-induced damage. The present work considers the effect on electric-field modulation caused by an array of commonly found inadvertent flaws in gratings including fabrication defects, contamination particles, and laser-induced-damage initiation. These defects affect the laser-damage performance characteristics of the grating. To understand the local field-enhancement distribution due these imperfections, 3D modeling of the electric-field distribution is performed with a sufficiently high resolution of 1/74 of the laser wavelength (λ) while considering a volume of ≈489 λ3. The results provide estimates for the ensuing electric-field intensification and projected reduction of the laser-damage thresholds, as well as the anticipated pattern of damage growth initiation.

2.
Small ; 19(14): e2206516, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36604969

ABSTRACT

Flexible and controllable fabrication of micro-nano structures on metallic glasses (MGs) endow them with more functional applications, but it is still challenging due to the unique mechanical, physical, and chemical properties of MGs. In this study, inspired by a new physical phenomenon observed in the nanosecond laser-MG interaction (i.e., the surface structure is transformed from the normally observed microgroove into the micro-nano bulge at a critical peak laser power intensity), a nanosecond laser "pulling" method is proposed to pattern the MG surface. The formation mechanism and evolution of the micro-nano bulge are investigated in detail, and accordingly, various micro-nano structures including the unidirectional stripe, pillar, cross-hatch patterns, "JLU", circle, triangle, and square, are derived and created on the MG surface, which affects the surface optical diffraction. Overall, this study provides a highly flexible and controllable method to fabricate micro-nano structures on MGs.

3.
Exp Eye Res ; 226: 109312, 2023 01.
Article in English | MEDLINE | ID: mdl-36400287

ABSTRACT

C-X-C chemokine receptor type 5 (CXCR5) regulates inflammatory responses in ocular and non-ocular tissues. However, its expression and role in the cornea are still unknown. Here, we report the expression of CXCR5 in human cornea in vitro and mouse corneas in vivo, and its functional role in corneal inflammation using C57BL/6J wild-type (CXCR5+/+) and CXCR5-deficient (CXCR5-/-) mice, topical alkali injury, clinical eye imaging, histology, immunofluorescence, PCR, qRT-PCR, and western blotting. Human corneal epithelial cells, stromal fibroblasts, and endothelial cells demonstrated CXCR5 mRNA and protein expression in PCR, and Western blot analyses, respectively. To study the functional role of CXCR5 in vivo, mice were divided into four groups: Group-1 (CXCR5+/+ alkali injured cornea; n = 30), Group-2 (CXCR5-/- alkali injured cornea; n = 30), Group-3 (CXCR5+/+ naïve cornea; n = 30), and Group-4 (CXCR5-/- naïve cornea; n = 30). Only one eye was wounded with alkali. Clinical corneal evaluation and imaging were performed before and after injury. Mice were euthanized 4 h, 3 days, or 7 days after injury, eyes were excised and used for histology, immunofluorescence, and qRT-PCR. In clinical eye examinations, CXCR5-/- mouse corneas showed ocular health akin to the naïve corneas. Alkali injured CXCR5+/+ mouse corneas showed significantly increased mRNA (p < 0.001) and protein (p < 0.01 or p < 0.0001) levels of the CXCR5 compared to the naïve corneas. Likewise, alkali injured CXCR5-/- mouse corneas showed remarkably amplified inflammation in clinical eye exams in live animals. The histological and molecular analyses of these corneas post euthanasia exhibited markedly augmented inflammatory cells in H&E staining and significant CD11b + cells in immunofluorescence (p < 0.01 or < 0.05); and tumor necrosis factor-alpha (TNFα; p < 0.05), cyclooxygenase 2 (COX-2; p < 0.0001), interleukin (IL)-1ß (p < 0.0001), and IL-6 (p < 0.0001 or < 0.01) mRNA expression compared to the CXCR5+/+ mouse corneas. Interestingly, CXCR5-/- alkali injured corneas also showed altered mRNA expression of fibrotic alpha smooth muscle actin (α-SMA; p > 0.05) and angiogenic vascular endothelial growth factor (VEGF; p < 0.01) compared to the CXCR5+/+ alkali injured corneas. In summary, the CXCR5 gene is expressed in all three major layers of the cornea and appears to influence corneal inflammatory and repair events post-injury in vivo. More studies are warranted to tease the mechanistic role of CXCR5 in corneal inflammation and wound healing.


Subject(s)
Burns, Chemical , Corneal Injuries , Eye Burns , Humans , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Cornea/metabolism , Corneal Injuries/metabolism , Vascular Endothelial Growth Factors , Alkalies , RNA, Messenger/genetics , RNA, Messenger/metabolism , Inflammation/metabolism , Receptors, Chemokine/metabolism , Burns, Chemical/metabolism , Eye Burns/metabolism
4.
Ann Bot ; 132(5): 1007-1020, 2023 11 30.
Article in English | MEDLINE | ID: mdl-37831901

ABSTRACT

BACKGROUND AND AIMS: The functional specialization of microRNA and its target genes is often an important factor in the establishment of spatiotemporal patterns of gene expression that are essential to plant development and growth. In different plant lineages, understanding the functional conservation and divergence of microRNAs remains to be explored. METHODS: To identify small regulatory RNAs underlying floral patterning, we performed a tissue-specific profiling of small RNAs in various floral organs from single and double flower varieties (flowers characterized by multiple layers of petals) in Camellia japonica. We identified cja-miR5179, which belongs to a deeply conserved microRNA family that is conserved between angiosperms and basal plants but frequently lost in eudicots. We characterized the molecular function of cja-miR5179 and its target - a B-function MADS-box gene - through gene expression analysis and transient expression assays. KEY RESULTS: We showed that cja-miR5179 is exclusively expressed in ovule tissues at the early stage of floral development. We found that cja-miR5179 targets the coding sequences of a DEFICIENS-like B-class gene (CjDEF) mRNA, which is located in the K motif of the MADS-box domain; and the target sites of miR5179/MADS-box were consistent in Camellia and orchids. Furthermore, through a petal transient-expression assay, we showed that the BASIC PENTACYSTEINE proteins bind to the GA-rich motifs in the cja-miR5179 promoter region and suppresses its expression. CONCLUSIONS: We propose that the regulation between miR5179 and a B-class MADS-box gene in C. japonica has a deep evolutionary origin before the separation of monocots and dicots. During floral development of C. japonica, cja-miR5179 is specifically expressed in the ovule, which may be required for the inhibition of CjDEF function. This work highlights the evolutionary conservation as well as functional divergence of small RNAs in floral development.


Subject(s)
Camellia , MicroRNAs , MicroRNAs/genetics , Ovule/genetics , Ovule/metabolism , Camellia/genetics , Camellia/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Evolution, Molecular , Flowers/physiology , Plants/metabolism , Gene Expression Regulation, Plant
5.
Curr Issues Mol Biol ; 44(9): 4059-4069, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36135190

ABSTRACT

The developmental regulation of flower organs involves the spatio-temporal regulation of floral homeotic genes. BASIC PENTACYSTEINE genes are plant-specific transcription factors that is involved in many aspects of plant development through gene transcriptional regulation. Although studies have shown that the BPC genes are involved in the developmental regulation of flower organs, little is known about their role in the formation of double-flower due. Here we characterized a Class I BPC gene (CjBPC1) from an ornamental flower-Camellia japonica. We showed that CjBPC1 is highly expressed in the central whorls of flowers in both single and doubled varieties. Overexpression of CjBPC1 in Arabidopsis thaliana caused severe defects in siliques and seeds. We found that genes involved in ovule and seed development, including SEEDSTICK, LEAFY COTYLEDON2, ABSCISIC ACID INSENSITIVE 3 and FUSCA3, were significantly down-regulated in transgenic lines. We showed that the histone 3 lysine 27 methylation levels of these downstream genes were enhanced in the transgenic plants, indicating conserved roles of CjBPC1 in recruiting the Polycomb Repression Complex for gene suppression.

6.
Exp Cell Res ; 403(1): 112581, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33811906

ABSTRACT

PURPOSE: To evaluate Nuclear Factor NF-κB (NF-κB) signaling on microglia activation, migration, and angiogenesis in laser-induced choroidal neovascularization (CNV). METHODS: Nine-week-old C57BL/6 male mice were randomly assigned to IMD-0354 treated or untreated groups (5 mice, 10 eyes per group). CNV was induced with a 532-nm laser. Laser spots (power 250 mW, spot size 100 µm, time of exposure 50 ms) were created in each eye using a slit-lamp delivery system. Selective inhibitor of nuclear factor kappa-B kinase subunit beta (IKK2) inhibitor IMD-0354 (10 µg) was delivered subconjunctivally; vehicle-treated mice were the control. The treatment effect on CNV development was assessed at five days post-CNV induction in vivo in C57BL/6 and Cx3cr1gfp/wt mice by fluorescent angiography, fundus imaging, and ex vivo by retinal flatmounts immunostaining and Western blot analysis of RPE/Choroidal/Scleral complexes (RCSC) lysates. In vitro evaluations of IMD-0354 effects were performed in the BV-2 microglial cell line using lipopolysaccharide (LPS) stimulation. RESULTS: IMD-0354 caused a significant reduction in the fluorescein leakage and size of the laser spot, as well as a reduction in microglial cell migration and suppression of phospho-IκBα, Vascular endothelial growth factor (VEGF-A), and Prostaglandin-endoperoxide synthase 2 (COX-2). In vivo and ex vivo observations demonstrated reduced lesion size in mice, CD68, and Allograft inflammatory factor 1 (IBA-1) positive microglia cells migration to the laser injury site in IMD-0354 treated eyes. The data further corroborate with GFP-positive cells infiltration of the CNV site in Cx3cr1wt/gfp mice. In vitro IMD-0354 (10-25 ng/ml) treatment reduced NF-κB activation, expression of COX-2, caused decreased Actin-F presence and organization, resulting in reduced BV-2 cells migration capacity. CONCLUSION: The present data indicate that NF-κB activation in microglia and it's migration capacity is involved in the development of laser CNV in mice. Its suppression by NF-κB inhibition might be a promising therapeutic strategy for wet AMD.


Subject(s)
Gene Expression Regulation/physiology , Microglia/metabolism , NF-kappa B/metabolism , Retina/metabolism , Animals , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Disease Models, Animal , I-kappa B Proteins/metabolism , Inflammation/metabolism , Lasers , Mice, Inbred C57BL
7.
Genomics ; 113(5): 3058-3071, 2021 09.
Article in English | MEDLINE | ID: mdl-34242709

ABSTRACT

BACKGROUND: Retinal microglial cells (RMCs) play crucial roles in maintaining normal visual functions in a healthy eye. However, the underlying mechanisms of RMCs over-activation manifesting the alterations of sensome profile and inflammation state, which contribute to various retinal neurodegenerative diseases, remain elusive. Here, we aimed to identify the core set of sensome and pro-inflammatory genes and their regulators using transcriptome and data mining approaches. METHODS: We performed paired-end RNA-sequencing in primary microglial cell cultures treated with TNFα/IFNϒ (10 ng/ml for 12 h) and PBS as a control. Gene enrichment analysis and hierarchical clustering for the differentially expressed transcripts highlight functional pathways and network perturbations. We examined overlaps of the mouse microglial gene expression profiles with the data-mined human sensome and pro-inflammatory marker genes. The core sets of sensome and pro-inflammatory genes were selected and predicted for transcription factors (TFs). The identified TFs in RNA-Seq are validated by the quantitative PCR method. RESULTS: TNFα/IFNϒ induced 668 differentially expressed transcripts in retinal microglial cells relative to the control. Furthermore, gene enrichment analysis and the gene expression network revealed activated microglial genes, biological, molecular and inflammatory pathways. The overlapping analysis of the TNFα/IFNϒ-activated microglia genes and the data-mined human gene sets revealed 22 sensome and 61 pro-inflammatory genes. Based on network analysis, we determined 10 genes as the core sets of sensome and pro-inflammatory genes and predicted the top ten TFs that regulate them. The SP110, IRF1, FLI1, SP140 (sensome) and RELB, BATF2, NFKB2, TRAFD1, SP100, NFKB1 (inflammation) are differentially expressed between the TNFα/IFNϒ activated and the non-activated microglia which were validated by quantitative PCR. The outcomes indicate that these transcriptional regulators are highly expressed and may regulate the sensome and inflammatory genes of RMCs and switch them to over-activation. CONCLUSION: Our results comprise a powerful, cross-species functional genomics resource for sensome and inflammation of RMCs, which may provide novel therapeutic approaches to prevent retinal neurodegenerative diseases.


Subject(s)
Microglia , Transcriptome , Animals , Gene Expression Profiling , Inflammation/genetics , Mice , Microglia/metabolism , Neuroglia/metabolism
8.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36498991

ABSTRACT

Microglia are resident immune cells in the central nervous system (CNS). Microglial activation plays a prominent role in neuroinflammation and CNS diseases. However, the underlying mechanisms of microglial activation are not well understood. Here, we report that the transcription factor interferon regulatory factor 1 (IRF1) plays critical roles in microglial activation and retinal inflammation by regulating pro- and anti-inflammatory gene expression. IRF1 expression was upregulated in activated retinal microglia compared to those at the steady state. IRF1 knockout (KO) in BV2 microglia cells (BV2ΔIRF1) created by CRISPR/Cas9 genome-editing technique causes decreased microglia proliferation, migration, and phagocytosis. IRF1-KO decreased pro-inflammatory M1 marker gene expression induced by lipopolysaccharides (LPS), such as IL-6, COX-2, and CCL5, but increased anti-inflammatory M2 marker gene expression by IL-4/13, such as Arg-1, CD206, and TGF-ß. Compared to the wild-type cells, microglial-conditioned media (MCM) of activated BV2ΔIRF1 cell cultures reduced toxicity or death to several retinal cells, including mouse cone photoreceptor-like 661 W cells, rat retinal neuron precursor R28 cells, and human ARPE-19 cells. IRF1 knockdown by siRNA alleviated microglial activation and retinal inflammation induced by LPS in mice. Together, the findings suggest that IRF1 plays a vital role in regulating microglial activation and retinal inflammation and, therefore, may be targeted for treating inflammatory and degenerative retinal diseases.


Subject(s)
Inflammation , Interferon Regulatory Factor-1 , Microglia , Animals , Humans , Mice , Rats , Inflammation/pathology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Lipopolysaccharides , Microglia/metabolism , Retina/pathology
9.
Lab Invest ; 101(2): 228-244, 2021 02.
Article in English | MEDLINE | ID: mdl-32994482

ABSTRACT

Homeostasis of the retinal pigment epithelium (RPE) is essential for the health and proper function of the retina. Regulation of RPE homeostasis is, however, largely unexplored, yet dysfunction of this process may lead to retinal degenerative diseases, including age-related macular degeneration (AMD). Here, we report that chemokine receptor CXCR5 regulates RPE homeostasis through PI3K/AKT signaling and by suppression of FOXO1 activation. We used primary RPE cells isolated from CXCR5-deficient mice and wild type controls, as well as ex vivo RPE-choroidal-scleral complexes (RCSC) to investigate the regulation of homeostasis. CXCR5 expression in mouse RPE cells was diminished by treatment with hydrogen peroxide. Lack of CXCR5 expression leads to an abnormal cellular shape, pigmentation, decreased expression of the RPE differentiation marker RPE65, an increase in the undifferentiated progenitor marker MITF, and compromised RPE barrier function, as well as compromised cell-to-cell interaction. An increase in epithelial-mesenchymal transition (EMT) markers (αSMA, N-cadherin, and vimentin) was noted in CXCR5-deficient RPE cells both in vitro and in age-progression specimens of CXCR5-/- mice (6, 12, 24-months old). Deregulated autophagy in CXCR5-deficient RPE cells was observed by decreased LC3B-II, increased p62, abnormal autophagosomes, and impaired lysosome enzymatic activity as shown by GFP-LC3-RFP reporter plasmid. Mechanistically, deficiency in CXCR5 resulted in the downregulation of PI3K and AKT signaling, but upregulation and nuclear localization of FOXO1. Additionally, inhibition of PI3K in RPE cells resulted in an increased expression of FOXO1. Inhibition of FOXO1, however, reverts the degradation of ZO-1 caused by CXCR5 deficiency. Collectively, these findings suggest that CXCR5 maintains PI3K/AKT signaling, which controls FOXO1 activation, thereby regulating the expression of genes involved in RPE EMT and autophagy deregulation.


Subject(s)
Receptors, CXCR5 , Retinal Pigment Epithelium , Animals , Autophagy/genetics , Cells, Cultured , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR5/genetics , Receptors, CXCR5/metabolism , Receptors, CXCR5/physiology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/physiopathology , Signal Transduction/genetics
10.
Exp Cell Res ; 397(2): 112347, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33130176

ABSTRACT

To investigate the role of placental growth factor/vascular endothelial growth factor (PlGF-VEGF) heterodimers are involved in the blood-retinal barrier (BRB) breakdown and the associated mechanism, human retinal endothelial cells (HRECs) were treated with recombinant human (rh)PlGF-VEGF heterodimers and rhPlGF and studied in normal and high-glucose conditions. HREC barrier function was evaluated by the measurement of trans-endothelial electrical resistance (TEER). Adeno-Associated Virus Type 5 (AAV5) vectors overexpressed PlGF in the retina by intravitreal injection into the C57BL6 mouse eye. AAV5-GFP vector and naïve animals were used as controls. Immunofluorescence (IF) and western blots examined the protein expression of PlGF-VEGF heterodimers, VEGF, PlGF, NFκB, p-IκBα, ZO-1, and VE-cadherin in HREC and mouse retina. PlGF-VEGF heterodimers were detected predominantly in the HREC cell nuclei based on IF and cytoplasmic and nuclear fractionation experiments. High glucose treatment increased PlGF-VEGF nuclear abundance. Dot immunoblotting demonstrated a strong affinity of the 5D11D4 antibody to PlGF-VEGF heterodimers. rhPlGF-VEGF disrupted the barrier function of HREC, which was prevented by the neutralization of PlGF-VEGF by the 5D11D4 antibody. Stimulation of HRECs with rhPlGF also led to an increase in the nuclear signals for PlGF-VEGF, p-IκBα, and colocalization of NFκB p65 and PlGF-VEGF in the nuclei. The selective IKK2 inhibitor IMD0354 disrupted the nuclear colocalization. Treatment with IMD0354 restored the barrier function of HREC, as indicated by the ZO-1 and VE-cadherin expression. In the mouse retinas, PlGF overexpression by AAV5 vector reduced ZO-1 expression and increased abundance of pIκBα. PIGF/VEGF heterodimers mediate BRB breakdown potentially through the canonical NFκB activation.


Subject(s)
Blood-Retinal Barrier/pathology , Endothelial Cells/pathology , NF-kappa B/metabolism , Placenta Growth Factor/metabolism , Retina/pathology , Vascular Endothelial Growth Factor A/metabolism , Animals , Blood-Retinal Barrier/metabolism , Endothelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Protein Interaction Domains and Motifs , Retina/metabolism , Signal Transduction
11.
BMC Genomics ; 21(1): 132, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32033529

ABSTRACT

BACKGROUND: Retinal degenerative diseases affect millions of people and represent the leading cause of vision loss around the world. Retinal degeneration has been attributed to a wide variety of causes, such as disruption of genes involved in phototransduction, biosynthesis, folding of the rhodopsin molecule, and the structural support of the retina. The molecular pathogenesis of the biological events in retinal degeneration is unclear; however, the molecular basis of the retinal pathological defect can be potentially determined by gene-expression profiling of the whole retina. In the present study, we analyzed the differential gene expression profile of the retina from a wild-type zebrafish and phosphodiesterase 6c (pde6c) mutant. RESULTS: The datasets were downloaded from the Sequence Read Archive (SRA), and adaptors and unbiased bases were removed, and sequences were checked to ensure the quality. The reads were further aligned to the reference genome of zebrafish, and the gene expression was calculated. The differentially expressed genes (DEGs) were filtered based on the log fold change (logFC) (±4) and p-values (p < 0.001). We performed gene annotation (molecular function [MF], biological process [BP], cellular component [CC]), and determined the functional pathways Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for the DEGs. Our result showed 216 upregulated and 3527 downregulated genes between normal and pde6c mutant zebrafish. These DEGs are involved in various KEGG pathways, such as the phototransduction (12 genes), mRNA surveillance (17 genes), phagosome (25 genes), glycolysis/gluconeogenesis (15 genes), adrenergic signaling in cardiomyocytes (29 genes), ribosome (20 genes), the citrate cycle (TCA cycle; 8 genes), insulin signaling (24 genes), oxidative phosphorylation (20 genes), and RNA transport (22 genes) pathways. Many more of all the pathway genes were down-regulated, while fewer were up-regulated in the retina of pde6c mutant zebrafish. CONCLUSIONS: Our data strongly indicate that, among these genes, the above-mentioned pathways' genes as well as calcium-binding, neural damage, peptidase, immunological, and apoptosis proteins are mostly involved in the retinal and neural degeneration that cause abnormalities in photoreceptors or retinal pigment epithelium (RPE) cells.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Retinal Degeneration/genetics , Zebrafish Proteins/genetics , Animals , Gene Ontology , Gene Regulatory Networks , Light Signal Transduction/genetics , Mutation , RNA-Seq , Retina/metabolism , Zebrafish/genetics
12.
J Cell Biochem ; 121(5-6): 3197-3207, 2020 06.
Article in English | MEDLINE | ID: mdl-31930562

ABSTRACT

MicroRNA-125a (miR-125a) is related to the occurrence, development, and prognosis of various cancers according to relevant reports. However, its function role and mechanism in non-small cell lung cancer (NSCLC) is yet to be explored. Herein, we investigated the role and preliminary mechanism of miR-125a in NSCLC. First, miR-125a was noticeably downregulated in NSCLC tissues in contrast to adjacent normal tissues through the real-time quantitative polymerase chain reaction (RT-qPCR) assay. The inverted result was observed on the STAT3 and HAS1 expressions. Moreover, miR-125a was expressed at highest level in A549 among four human NSCLC cell lines. Second, functional studies indicated miR-125a restrained proliferation, invasion, migration, metastasis, and advocated apoptosis of NSCLC cells, but had no obvious effect on cell cycle. Next, results indicated that a target of miR-125a was STAT3 on the basis of prediction and confirmation by the dual-luciferase reporter assay. RT-qPCR and Western blot assays displayed that miR-125a overexpression conspicuously constrained STAT3 expression at messenger RNA and protein levels. Finally, the binding between HAS1 promoter region and STAT3 was predicted by PROMO database analysis and verified by chromatin immunoprecipitation assay, suggesting that STAT3 was bound with the HAS1 promoter regions. STAT3 overexpression exerted positive effects on HAS1 expression at protein and mRNA levels. Additionally, HAS1-related functional studies illustrated HAS1 pronouncedly suppressed the proliferative, invasive, and migratory potential of NSCLC cells in vitro. Collectively, our findings demonstrated that miR-125a prohibited the proliferation, invasion, and migration of NSCLC cells by HAS1 expression reduction as a result of inhibiting STAT3 expression in NSCLC. This study indicated that miR-125a might be of potential or value for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Hyaluronan Synthases/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , STAT3 Transcription Factor/metabolism , A549 Cells , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Protein Binding
13.
J Neuroinflammation ; 17(1): 132, 2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32334630

ABSTRACT

BACKGROUND: The ways in which microglia activate and promote neovascularization (NV) are not fully understood. Recent in vivo evidence supports the theory that calcium is required for the transition of microglia from a surveillance state to an active one. The objectives of this study were to discover novel L-type voltage-gated channel (L-VGCC) blockers and investigate their application for the prevention of inflammation and angiogenesis. METHODS: Pharmacophore-based computational modeling methods were used to screen for novel calcium channel blockers (CCBs) from the ZINC compound library. The effects of CCBs on calcium blockade, microglial pro-inflammatory activation, and cell toxicity were validated in BV-2 microglial cell and freshly isolated smooth muscle cell (SMC) cultures. Laser-induced choroidal neovascularization (NV) and the suture-induced inflammatory corneal NV models of angiogenesis were used for in vivo validation of the novel CCBs. CX3CR1gfp/+ mice were used to examine the infiltration of GFP-labeled microglial cells. RESULTS: We identified three compounds from the ZINC database (Zinc20267861, Zinc18204217, and Zinc33254827) as new blockers of L-type voltage-gated calcium channels (L-VGCC) using a structure-based pharmacophore approach. The effects of the three CCBs on Ca2+ influx into cells were verified in BV-2 microglial cells using Fura-2 fluorescent dye and in freshly isolated SMCs using the voltage-patch clamp. All three CCBs reduced microglial cell migration, activation stimulated by lipopolysaccharide (LPS), and reduced the expression of the inflammatory markers NF-κB (phospho-IκBα) and cyclooxygenase-2 (COX-2) as well as reactive oxygen species. Of the three compounds, we further examined the in vivo activity of Zinc20267861. Topical treatment with Zinc20267861 in a rat model of suture-induced inflammatory cornea neovascularization demonstrated efficacy of the compound in reducing monocyte infiltration and overall corneal NV response. Subconjunctival administration of the compound in the choroidal NV mouse model effectively prevented CNV and microglial infiltration. CONCLUSIONS: Our findings suggest that the novel CCBs identified here are effective anti-inflammatory agents that can be further evaluated for treating NV disorders and can be potentially applied in the treatment of ocular inflammatory and pathological angiogenetic disorders.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Inflammation/prevention & control , Microglia/drug effects , Neovascularization, Pathologic/prevention & control , Animals , Anti-Inflammatory Agents/pharmacology , Drug Discovery , Inflammation/metabolism , Mice , Microglia/metabolism , Molecular Docking Simulation , Neovascularization, Pathologic/metabolism
14.
Exp Eye Res ; 196: 108061, 2020 07.
Article in English | MEDLINE | ID: mdl-32387618

ABSTRACT

The objective of this study is to characterize the retinal degeneration (RD) phenotype of CXCR5/NRF2 double knockout (DKO) mice at the early adult age. CXCR5 KO mice and NRF2 KO mice were bred to create CXCR5/NRF2 DKO mice. The assessment of RD features included fundus and optical coherence tomography (OCT) imaging, periodic acid-Schiff (PAS), and immunofluorescence staining of retinal pigment epithelium (RPE)-choroid flatmounts. Stained samples were imaged with fluorescent microscopy, and Western blots were used to monitor protein expression changes. The staining of cleaved caspase-3 and PNA-lectin was performed to assess the presence of photoreceptor cell apoptosis. Quantification and statistical analyses were performed with Image J and Graphpad software. The young adult (2-6 months) DKO mice exhibited increased hypopigmented spots on fundus and sub-RPE abnormalities on OCT as compared to the CXCR5-KO mice, and C57BL6 WT controls. PAS-stained sections demonstrated aberrant RPE/sub-RPE depositions. The DKO mice had increased sub-RPE depositions of IgG and AMD-associated proteins (ß-amyloid, Apolipoprotein-E, C5b-9, and αB-crystallin). The protein expression of AMD-associated proteins and microglia marker (TMEM119) were upregulated at the RPE/BM/choroid complex of DKO mice. The adult DKO mice underwent photoreceptor cell apoptosis compared to the single CXCR5 and NRF2 KO and the WT mice at an early adult age. Mechanistically increased expression of CXCL13 and N-cadherin was observed as a sign of epithelial-mesenchymal transition. The data suggest that the CXCR5/NRF2-DKO mice develop RD characteristics at an early age and may serve as a valuable animal model of RD.


Subject(s)
Disease Models, Animal , NF-E2-Related Factor 2/genetics , Receptors, CXCR5/genetics , Retinal Degeneration/genetics , Animals , Apoptosis , Blotting, Western , Cadherins/metabolism , Caspase 3/metabolism , Chemokine CXCL13/metabolism , Electroretinography , Epithelial-Mesenchymal Transition/physiology , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , Periodic Acid-Schiff Reaction , Phenotype , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Tomography, Optical Coherence , Zonula Occludens-1 Protein/metabolism
15.
Hum Genomics ; 13(1): 15, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894217

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is the most common, progressive, and polygenic cause of irreversible visual impairment in the world. The molecular pathogenesis of the primary events of AMD is poorly understood. We have investigated a transcriptome-wide analysis of differential gene expression, single-nucleotide polymorphisms (SNPs), indels, and simple sequence repeats (SSRs) in datasets of the human peripheral retina and RPE-choroid-sclera control and AMD. METHODS AND RESULTS: Adaptors and unbiased components were removed and checked to ensure the quality of the data sets. Molecular function, biological process, cellular component, and pathway analyses were performed on differentially expressed genes. Analysis of the gene expression datasets identified 5011 upregulated genes, 11,800 downregulated genes, 42,016 SNPs, 1141 indels, and 6668 SRRs between healthy controls and AMD donor material. Enrichment categories for gene ontology included chemokine activity, cytokine activity, cytokine receptor binding, immune system process, and signal transduction respectively. A functional pathways analysis identified that chemokine receptors bind chemokines, complement cascade genes, and create cytokine signaling in immune system pathway genes (p value < 0.001). Finally, allele-specific expression was found to be significant for Chemokine (C-C motif) ligand (CCL) 2, 3, 4, 13, 19, 21; C-C chemokine receptor (CCR) 1, 5; chemokine (C-X-C motif) ligand (CXCL) 9, 10, 16; C-X-C chemokine receptor type (CXCR) 6; as well as atypical chemokine receptor (ACKR) 3,4 and pro-platelet basic protein (PPBP). CONCLUSIONS: Our results improve our overall understanding of the chemokine receptors' signaling pathway in AMD conditions, which may lead to potential new diagnostic and therapeutic targets.


Subject(s)
Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Receptors, Chemokine/genetics , Aged , Aged, 80 and over , Case-Control Studies , Chemokines/genetics , Chemokines/metabolism , Databases, Genetic , Female , Gene Expression Profiling/methods , Gene Regulatory Networks , Humans , Male , Microsatellite Repeats , Receptors, Chemokine/metabolism , Signal Transduction/genetics , Transcriptome
16.
FASEB J ; 33(12): 13695-13709, 2019 12.
Article in English | MEDLINE | ID: mdl-31585507

ABSTRACT

We report that placental growth factor (PlGF) negatively affects the endothelial cell (EC) barrier function through a novel regulatory mechanism. The PlGF mAb promotes (but recombinant protein disrupts) EC barrier function, thus affecting the barrier-forming protein levels, membrane distribution, and EC monolayer impedance by the electrical cell-impedance sensing system, Western blot, and immunofluorescence staining. RNA sequencing-based transcriptome analysis identified the up-regulation of the pentose phosphate pathway (PPP) and the antioxidant defense protein by PlGF blockade. The PlGF and PlGF/VEGF dimers (but not VEGF-A) down-regulated the protein expression of glucose-6-phosphate dehydrogenase (G6PD) and peroxiredoxin (PRDX). G6PD inhibition and gene silencing (small interfering RNA) abolished the beneficial effects of PlGF inhibition on EC barrier function and PRDX3/6 protein expression. VEGF receptor (VEGFR)1 or VEGFR2 blockade prevented the inhibitory effect of PlGF on G6PD protein expression and EC barrier function. The PRDX6 played dual roles in EC barrier function through glutathione peroxidase and phospholipase A2 activity. In sum, PlGF negatively regulates EC barrier function through the activation of VEGFR1 and VEGFR2 and the suppression of the G6PD/PPP and the antioxidant pathways.-Huang, H., Lennikov, A., Saddala, M. S., Gozal, D., Grab, D. J., Khalyfa, A., Fan, L. Placental growth factor negatively regulates endothelial cell barrier function through suppression of glucose-6-phosphate dehydrogenase and antioxidant defense systems.


Subject(s)
Antioxidants/metabolism , Endothelial Cells/metabolism , Glucosephosphate Dehydrogenase/metabolism , Placenta Growth Factor/metabolism , Retina/metabolism , Cells, Cultured , Glutathione Peroxidase/metabolism , Humans , Phospholipases A2/metabolism , Retinal Vessels/metabolism , Up-Regulation/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Mol Cell Biochem ; 475(1-2): 93-106, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32813141

ABSTRACT

Placental growth factor (PlGF or PGF) is a member of the VEGF (vascular endothelial growth factor) family. It plays a pathological role in inflammation, vascular permeability, and pathological angiogenesis. The molecular signaling by which PlGF mediates its effects in non-proliferative diabetic retinopathy (DR) remains elusive. This study aims to characterize the transcriptome changes of human retinal endothelial cells (HRECs) with the presence and the absence of PlGF signaling. Primary HRECs were treated with the PlGF antibody (ab) to block its activity. The total RNA was isolated and subjected to deep sequencing to quantify the transcripts and their changes in both groups. We performed transcriptome-wide analysis, gene ontology, pathway enrichment, and gene-gene network analyses. The results showed that a total of 3760 genes were significantly differentially expressed and were categorized into cell adhesion molecules, cell junction proteins, chaperone, calcium-binding proteins, and membrane traffic proteins. Functional pathway analyses revealed that the TGF-ß pathway, pentose phosphate pathway, and cell adhesion pathway play pivotal roles in the blood-retina barrier and antioxidant defense system. Collectively, the data provide new insights into the molecular mechanisms of PlGF's biological functions in HRECs relevant to DR and diabetic macular edema (DME). The newly identified genes and pathways may act as disease markers and target molecules for therapeutic interventions for the patients with DR and DME refractory to the current anti-VEGF therapy.


Subject(s)
Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Placenta Growth Factor/pharmacology , RNA-Seq/methods , Retina/metabolism , Retinal Vessels/metabolism , Transforming Growth Factor beta/metabolism , Cells, Cultured , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Gene Expression Regulation , Humans , Retina/drug effects , Retina/pathology , Retinal Vessels/drug effects , Retinal Vessels/pathology , Signal Transduction , Transforming Growth Factor beta/genetics
18.
BMC Health Serv Res ; 20(1): 640, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32650759

ABSTRACT

BACKGROUND: Hospital performance quality assessments inform patients, providers, payers, and purchasers in making healthcare decisions. These assessments have been developed by government, private and non-profit organizations, and academic institutions. Given the number and variability in available assessments, a knowledge gap exists regarding what assessments are available and how each assessment measures quality to identify top performing hospitals. This study aims to: (a) comprehensively identify current hospital performance assessments, (b) compare quality measures from each methodology in the context of the Institute of Medicine's (IOM) six domains of STEEEP (safety, timeliness, effectiveness, efficiency, equitable, and patient-centeredness), and (c) formulate policy recommendations that improve value-based, patient-centered care to address identified gaps. METHODS: A scoping review was conducted using a systematic search of MEDLINE and the grey literature along with handsearching to identify studies that provide assessments of US-based hospital performance whereby the study cohort examined a minimum of 250 hospitals in the last two years (2017-2019). RESULTS: From 3058 unique records screened, 19 hospital performance assessments met inclusion criteria. Methodologies were analyzed across each assessment and measures were mapped to STEEEP. While safety and effectiveness were commonly identified measures across assessments, efficiency, and patient-centeredness were less frequently represented. Equity measures were also limited to risk- and severity-adjustment methods to balance patient characteristics across populations, rather than stand-alone indicators to evaluate health disparities that may contribute to community-level inequities. CONCLUSIONS: To further improve health and healthcare value-based decision-making, there remains a need for methodological transparency across assessments and the standardization of consensus-based measures that reflect the IOM's quality framework. Additionally, a large opportunity exists to improve the assessment of health equity in the communities that hospitals serve.


Subject(s)
Hospitals/standards , Quality Assurance, Health Care/standards , Delivery of Health Care , Humans , Patient-Centered Care , United States
19.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33049983

ABSTRACT

Retinal microvasculature is crucial for the visual function of the neural retina. Pericytes and endothelial cells (ECs) are the two main cellular constituents in the retinal microvessels. Formation, maturation, and stabilization of the micro-vasculatures require pericyte-endothelial interactions, which are perturbed in many retinal vascular disorders, such as retinopathy of prematurity, retinal vein occlusion, and diabetic retinopathy. Understanding the cellular and molecular mechanisms of pericyte-endothelial interaction and perturbation can facilitate the design of therapeutic intervention for the prevention and treatment of retinal vascular disorders. Pericyte-endothelial interactions are indispensable for the integrity and functionality of retinal neurovascular unit (NVU), including vascular cells, retinal neurons, and glial cells. The essential autocrine and paracrine signaling pathways, such as Vascular endothelial growth factor (VEGF), Platelet-derived growth factor subunit B (PDGFB), Notch, Angipointein, Norrin, and Transforming growth factor-beta (TGF-ß), have been well characterized for the regulation of pericyte-endothelial interactions in the neo-vessel formation processes (vasculogenesis and angiogenesis) during embryonic development. They also play a vital role in stabilizing and remodeling mature vasculature under pathological conditions. Awry signals, aberrant metabolisms, and pathological conditions, such as oxidative stress and inflammation, can disrupt the communication between pericytes and endothelial cells, thereby resulting in the breakdown of the blood-retinal barrier (BRB) and other microangiopathies. The emerging evidence supports extracellular exosomes' roles in the (mis)communications between the two cell types. This review summarizes the essential knowledge and updates about new advancements in pericyte-EC interaction and communication, emphasizing the retinal microvasculature.


Subject(s)
Endothelial Cells/metabolism , Microvessels/metabolism , Pericytes/metabolism , Retinal Vessels/metabolism , Signal Transduction , Animals , Blood-Retinal Barrier/metabolism , Exosomes/metabolism , Humans , Models, Animal , Neovascularization, Physiologic , Retina/metabolism , Retinal Diseases/metabolism
20.
Int J Mol Sci ; 21(4)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102234

ABSTRACT

Glucose-6-Phosphate Dehydrogenase (G6PD) is a ubiquitous cytoplasmic enzyme converting glucose-6-phosphate into 6-phosphogluconate in the pentose phosphate pathway (PPP). The G6PD deficiency renders the inability to regenerate glutathione due to lack of Nicotine Adenosine Dinucleotide Phosphate (NADPH) and produces stress conditions that can cause oxidative injury to photoreceptors, retinal cells, and blood barrier function. In this study, we constructed pharmacophore-based models based on the complex of G6PD with compound AG1 (G6PD activator) followed by virtual screening. Fifty-three hit molecules were mapped with core pharmacophore features. We performed molecular descriptor calculation, clustering, and principal component analysis (PCA) to pharmacophore hit molecules and further applied statistical machine learning methods. Optimal performance of pharmacophore modeling and machine learning approaches classified the 53 hits as drug-like (18) and nondrug-like (35) compounds. The drug-like compounds further evaluated our established cheminformatics pipeline (molecular docking and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis). Finally, five lead molecules with different scaffolds were selected by binding energies and in silico ADMET properties. This study proposes that the combination of machine learning methods with traditional structure-based virtual screening can effectively strengthen the ability to find potential G6PD activators used for G6PD deficiency diseases. Moreover, these compounds can be considered as safe agents for further validation studies at the cell level, animal model, and even clinic setting.


Subject(s)
Drug Discovery/methods , Glucosephosphate Dehydrogenase/chemistry , Glucosephosphate Dehydrogenase/drug effects , Glucosephosphate Dehydrogenase/metabolism , Machine Learning , Animals , Catalytic Domain , Drug Evaluation, Preclinical , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Glutathione/metabolism , Humans , Molecular Docking Simulation , NADP/chemistry , NADP/metabolism , Oxidation-Reduction , Oxidative Stress , Pentose Phosphate Pathway , Protein Interaction Domains and Motifs , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL