Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Ann Neurol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860471

ABSTRACT

Synergistic interactions between human herpesvirus 6A (HHV-6A) and Epstein-Barr virus (EBV) are hypothesized in the etiopathogenesis of multiple sclerosis (MS). This study investigated if HHV-6A and EBV seroreactivities interact regarding the risk of developing MS. Antibodies against viral antigens were analyzed in biobank samples from 670 individuals who later developed MS and matched controls. Additive interactions were analyzed. A significant interaction between HHV-6A and EBNA-1 seroreactivities was observed in study participants above the median age of 24.9 years (attributable proportion due to interaction = 0.45). This finding supports the hypothesis that HHV-6A and EBV infections interact in MS development. ANN NEUROL 2024.

2.
Brain ; 147(1): 177-185, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37930324

ABSTRACT

Recent research indicates that multiple sclerosis is preceded by a prodromal phase with elevated levels of serum neurofilament light chain (sNfL), a marker of axonal injury. The effect of environmental risk factors on the extent of axonal injury during this prodrome is unknown. Human herpesvirus 6A (HHV-6A) is associated with an increased risk of developing multiple sclerosis. The objective of this study was to determine if HHV-6A serostatus is associated with the level of sNfL in the multiple sclerosis prodrome, which would support a causative role of HHV-6A. A nested case-control study was performed by crosslinking multiple sclerosis registries with Swedish biobanks. Individuals with biobank samples collected before the clinical onset of multiple sclerosis were included as cases. Controls without multiple sclerosis were randomly selected, matched for biobank, sex, sampling date and age. Serostatus of HHV-6A and Epstein-Barr virus was analysed with a bead-based multiplex assay. The concentration of sNfL was analysed with single molecule array technology. The association between HHV-6A serology and sNfL was assessed by stratified t-tests and linear regressions, adjusted for Epstein-Barr virus serostatus and sampling age. Within-pair ratios of HHV-6A seroreactivity and sNfL were calculated for each case and its matched control. To assess the temporal relationship between HHV-6A antibodies and sNfL, these ratios were plotted against the time to the clinical onset of multiple sclerosis and compared using locally estimated scatterplot smoothing regressions with 95% confidence intervals (CI). Samples from 519 matched case-control pairs were included. In cases, seropositivity of HHV-6A was significantly associated with the level of sNfL (+11%, 95% CI 0.2-24%, P = 0.045) and most pronounced in the younger half of the cases (+24%, 95% CI 6-45%, P = 0.007). No such associations were observed among the controls. Increasing seroreactivity against HHV-6A was detectable before the rise of sNfL (significant within-pair ratios from 13.6 years versus 6.6 years before the clinical onset of multiple sclerosis). In this study, we describe the association between HHV-6A antibodies and the degree of axonal injury in the multiple sclerosis prodrome. The findings indicate that elevated HHV-6A antibodies both precede and are associated with a higher degree of axonal injury, supporting the hypothesis that HHV-6A infection may contribute to multiple sclerosis development in a proportion of cases.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 6, Human , Multiple Sclerosis , Humans , Antibodies , Biomarkers , Case-Control Studies , Herpesvirus 4, Human , Male , Female
3.
Brain ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630618

ABSTRACT

Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 (EBNA-1, truncated=aa[325-641], peptide=aa[385-420]) and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched controls. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 (OR=1.74, 95% CI=1.60-1.88) and EBNA-1, particularly the peptide (OR=3.13, 95% CI=2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to twelve times the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g., DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defense against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defense against EBV. Lastly, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.

4.
Nucleic Acids Res ; 51(17): 9266-9278, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37560916

ABSTRACT

The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.


Subject(s)
SARS-CoV-2 , Humans , COVID-19/virology , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Single-Stranded , Kinetics , Nucleotides , SARS-CoV-2/enzymology
5.
Proc Natl Acad Sci U S A ; 119(36): e2202489119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037333

ABSTRACT

We used single-molecule picometer-resolution nanopore tweezers (SPRNT) to resolve the millisecond single-nucleotide steps of superfamily 1 helicase PcrA as it translocates on, or unwinds, several kilobase-long DNA molecules. We recorded more than two million enzyme steps under various assisting and opposing forces in diverse adenosine tri- and diphosphate conditions to comprehensively explore the mechanochemistry of PcrA motion. Forces applied in SPRNT mimic forces and physical barriers PcrA experiences in vivo, such as when the helicase encounters bound proteins or duplex DNA. We show how PcrA's kinetics change with such stimuli. SPRNT allows for direct association of the underlying DNA sequence with observed enzyme kinetics. Our data reveal that the underlying DNA sequence passing through the helicase strongly influences the kinetics during translocation and unwinding. Surprisingly, unwinding kinetics are not solely dominated by the base pairs being unwound. Instead, the sequence of the single-stranded DNA on which the PcrA walks determines much of the kinetics of unwinding.


Subject(s)
DNA Helicases , Nucleotides , Adenosine Triphosphate/metabolism , DNA/metabolism , DNA Helicases/metabolism , DNA, Single-Stranded , Kinetics
6.
Nucleic Acids Res ; 50(18): 10601-10613, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36165957

ABSTRACT

Helicases are essential for nearly all nucleic acid processes across the tree of life, yet detailed understanding of how they couple ATP hydrolysis to translocation and unwinding remains incomplete because their small (∼300 picometer), fast (∼1 ms) steps are difficult to resolve. Here, we use Nanopore Tweezers to observe single Escherichia coli RecQ helicases as they translocate on and unwind DNA at ultrahigh spatiotemporal resolution. Nanopore Tweezers simultaneously resolve individual steps of RecQ along the DNA and conformational changes of the helicase associated with stepping. Our data reveal the mechanochemical coupling between physical domain motions and chemical reactions that together produce directed motion of the helicase along DNA. Nanopore Tweezers measurements are performed under either assisting or opposing force applied directly on RecQ, shedding light on how RecQ responds to such forces in vivo. Determining the rates of translocation and physical conformational changes under a wide range of assisting and opposing forces reveals the underlying dynamic energy landscape that drives RecQ motion. We show that RecQ has a highly asymmetric energy landscape that enables RecQ to maintain velocity when encountering molecular roadblocks such as bound proteins and DNA secondary structures. This energy landscape also provides a mechanistic basis making RecQ an 'active helicase,' capable of unwinding dsDNA as fast as it translocates on ssDNA. Such an energy landscape may be a general strategy for molecular motors to maintain consistent velocity despite opposing loads or roadblocks.


Subject(s)
RecQ Helicases/chemistry , Adenosine Triphosphate/metabolism , DNA, Single-Stranded , Escherichia coli/genetics , Escherichia coli/metabolism , Nanopores , Nucleic Acids , RecQ Helicases/metabolism
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879606

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.


Subject(s)
Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Transcriptome/genetics , Adult , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Leukocytes/metabolism , Leukocytes, Mononuclear/metabolism , Male , MicroRNAs/blood , MicroRNAs/cerebrospinal fluid , MicroRNAs/genetics , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis, Chronic Progressive/genetics , Multiple Sclerosis, Relapsing-Remitting/genetics , Neoplasm Recurrence, Local/metabolism , RNA, Small Untranslated/blood , RNA, Small Untranslated/cerebrospinal fluid , RNA, Small Untranslated/genetics
8.
J Am Chem Soc ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37036666

ABSTRACT

Chemists have now synthesized new kinds of DNA that add nucleotides to the four standard nucleotides (guanine, adenine, cytosine, and thymine) found in standard Terran DNA. Such "artificially expanded genetic information systems" are today used in molecular diagnostics; to support directed evolution to create medically useful receptors, ligands, and catalysts; and to explore issues related to the early evolution of life. Further applications are limited by the inability to directly sequence DNA containing nonstandard nucleotides. Nanopore sequencing is well-suited for this purpose, as it does not require enzymatic synthesis, amplification, or nucleotide modification. Here, we take the first steps to realize nanopore sequencing of an 8-letter "hachimoji" expanded DNA alphabet by assessing its nanopore signal range using the MspA (Mycobacterium smegmatis porin A) nanopore. We find that hachimoji DNA exhibits a broader signal range in nanopore sequencing than standard DNA alone and that hachimoji single-base substitutions are distinguishable with high confidence. Because nanopore sequencing relies on a molecular motor to control the motion of DNA, we then assessed the compatibility of the Hel308 motor enzyme with nonstandard nucleotides by tracking the translocation of single Hel308 molecules along hachimoji DNA, monitoring the enzyme kinetics and premature enzyme dissociation from the DNA. We find that Hel308 is compatible with hachimoji DNA but dissociates more frequently when walking over C-glycoside nucleosides, compared to N-glycosides. C-glycocide nucleosides passing a particular site within Hel308 induce a higher likelihood of dissociation. This highlights the need to optimize nanopore sequencing motors to handle different glycosidic bonds. It may also inform designs of future alternative DNA systems that can be sequenced with existing motors and pores.

9.
Mol Cell Proteomics ; 20: 100157, 2021.
Article in English | MEDLINE | ID: mdl-34597789

ABSTRACT

Proteomics studies are important for the discovery of new biomarkers as clinical tools for diagnosis and disease monitoring. However, preanalytical variations caused by differences in sample handling protocol pose challenges for assessing biomarker reliability and comparability between studies. The purpose of this study was to examine the effects of delayed centrifuging on measured protein levels in plasma and cerebrospinal fluid (CSF). Blood from healthy individuals and patients with multiple sclerosis along with CSF from patients with suspected neurological disorders were left at room temperature for different periods (blood: 1, 24, 48, 72 h; CSF: 1 and 6 h) prior to centrifuging. Ninety-one inflammation-related proteins were analyzed using a proximity extension assay, a high-sensitivity multiplex immunoassay. Additional metabolic and neurology-related markers were also investigated in CSF. In summary, many proteins, particularly in plasma, had increased levels with longer delays in processing likely due in part to intracellular leakage. Levels of caspase 8, interleukin 8, interleukin 18, sirtuin 2, and sulfotransferase 1A1 increased 2-fold to 10-fold in plasma after 24 h at room temperature. Similarly, levels of cathepsin H, ectonucleoside triphosphate diphosphohydrolase 5, and WW domain containing E3 ubiquitin protein ligase 2 differentiated in CSF with <6 h delay in processing. However, the rate of change for many proteins was relatively consistent; therefore, we were able to characterize biomarkers for detecting sample handling variability. Our findings highlight the importance of timely and consistent sample collection and the need for increased awareness of protein susceptibility to sample handling bias. In addition, suggested biomarkers may be used in certain situations to detect and correct for preanalytical variation in future studies.


Subject(s)
Blood Proteins/analysis , Cerebrospinal Fluid Proteins/analysis , Proteomics/methods , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Centrifugation , Humans , Inflammation/blood , Inflammation/cerebrospinal fluid , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Specimen Handling , Time Factors
10.
Proc Natl Acad Sci U S A ; 117(23): 12952-12960, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457139

ABSTRACT

Effective biomarkers for multiple sclerosis diagnosis, assessment of prognosis, and treatment responses, in particular those measurable in blood, are largely lacking. We have investigated a broad set of protein biomarkers in cerebrospinal fluid (CSF) and plasma using a highly sensitive proteomic immunoassay. Cases from two independent cohorts were compared with healthy controls and patients with other neurological diseases. We identified and replicated 10 cerebrospinal fluid proteins including IL-12B, CD5, MIP-1a, and CXCL9 which had a combined diagnostic efficacy similar to immunoglobulin G (IgG) index and neurofilament light chain (area under the curve [AUC] = 0.95). Two plasma proteins, OSM and HGF, were also associated with multiple sclerosis in comparison to healthy controls. Sensitivity and specificity of combined CSF and plasma markers for multiple sclerosis were 85.7% and 73.5%, respectively. In the discovery cohort, eotaxin-1 (CCL11) was associated with disease duration particularly in patients who had secondary progressive disease (PCSF < 4 × 10-5, Pplasma < 4 × 10-5), and plasma CCL20 was associated with disease severity (P = 4 × 10-5), although both require further validation. Treatment with natalizumab and fingolimod showed different compartmental changes in protein levels of CSF and peripheral blood, respectively, including many disease-associated markers (e.g., IL12B, CD5) showing potential application for both diagnosing disease and monitoring treatment efficacy. We report a number of multiple sclerosis biomarkers in CSF and plasma for early disease detection and potential indicators for disease activity. Of particular importance is the set of markers discovered in blood, where validated biomarkers are lacking.


Subject(s)
Chemokine CCL11/analysis , Chemokine CCL20/blood , Inflammation/immunology , Multiple Sclerosis/diagnosis , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Chemokine CCL11/immunology , Chemokine CCL20/immunology , Cohort Studies , Female , Humans , Inflammation/blood , Inflammation/cerebrospinal fluid , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/immunology , Prognosis , Proteomics , Reproducibility of Results , Severity of Illness Index , Young Adult
11.
Proc Natl Acad Sci U S A ; 116(34): 16955-16960, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31375628

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory, likely autoimmune disease of the central nervous system with a combination of genetic and environmental risk factors, among which Epstein-Barr virus (EBV) infection is a strong suspect. We have previously identified increased autoantibody levels toward the chloride-channel protein Anoctamin 2 (ANO2) in MS. Here, IgG antibody reactivity toward ANO2 and EBV nuclear antigen 1 (EBNA1) was measured using bead-based multiplex serology in plasma samples from 8,746 MS cases and 7,228 controls. We detected increased anti-ANO2 antibody levels in MS (P = 3.5 × 10-36) with 14.6% of cases and 7.8% of controls being ANO2 seropositive (odds ratio [OR] = 1.6; 95% confidence intervals [95%CI]: 1.5 to 1.8). The MS risk increase in ANO2-seropositive individuals was dramatic when also exposed to 3 known risk factors for MS: HLA-DRB1*15:01 carriage, absence of HLA-A*02:01, and high anti-EBNA1 antibody levels (OR = 24.9; 95%CI: 17.9 to 34.8). Reciprocal blocking experiments with ANO2 and EBNA1 peptides demonstrated antibody cross-reactivity, mapping to ANO2 [aa 140 to 149] and EBNA1 [aa 431 to 440]. HLA gene region was associated with anti-ANO2 antibody levels and HLA-DRB1*04:01 haplotype was negatively associated with ANO2 seropositivity (OR = 0.6; 95%CI: 0.5 to 0.7). Anti-ANO2 antibody levels were not increased in patients from 3 other inflammatory disease cohorts. The HLA influence and the fact that specific IgG production usually needs T cell help provides indirect evidence for a T cell ANO2 autoreactivity in MS. We propose a hypothesis where immune reactivity toward EBNA1 through molecular mimicry with ANO2 contributes to the etiopathogenesis of MS.


Subject(s)
Anoctamins , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Models, Immunological , Molecular Mimicry , Multiple Sclerosis , Anoctamins/genetics , Anoctamins/immunology , Autoantibodies/immunology , Cross Reactions/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/immunology , Female , HLA-A2 Antigen/immunology , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/immunology , Haplotypes , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/immunology , Humans , Immunoglobulin G/immunology , Male , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Risk Factors
12.
Eur J Neurol ; 28(12): 4146-4152, 2021 12.
Article in English | MEDLINE | ID: mdl-34435414

ABSTRACT

BACKGROUND: Among multiple sclerosis (MS) patients, an association has been observed between low levels of vitamin D and high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels. However, whether sun exposure/vitamin D moderates the role of Epstein-Barr virus (EBV) infection in MS etiology is unclear. We aimed to investigate potential synergistic effects between low sun exposure and elevated EBNA-1 antibody levels regarding MS risk. METHODS: We used a population-based case-control study involving 2017 incident cases of MS and 2443 matched controls. We used logistic regression models to calculate the odds ratios of MS with 95% confidence intervals (CIs) in subjects with different sun exposure habits and EBNA-1 status. Potential interaction on the additive scale was evaluated by calculating the attributable proportion due to interaction (AP). RESULTS: Low sun exposure acted synergistically with high EBNA-1 antibody levels (AP 0.2, 95% CI 0.03-0.3) in its association to increased MS risk. The interaction was present regardless of HLA-DRB1*15:01 status. CONCLUSIONS: Low sun exposure may either directly, or indirectly by affecting vitamin D levels, synergistically reinforce pathogenic mechanisms, such as aspects of the adaptive immune response, related to MS risk conveyed by EBV infection.


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , Antibodies, Viral , Case-Control Studies , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Sunlight
13.
Eur J Neurol ; 28(9): 3072-3079, 2021 09.
Article in English | MEDLINE | ID: mdl-34107122

ABSTRACT

BACKGROUND AND PURPOSE: Epstein-Barr virus (EBV) and human herpesvirus 6A (HHV-6A) are associated with increased risk of multiple sclerosis (MS). Conversely, infection with cytomegalovirus (CMV) has been suggested to reduce the risk of MS but supporting data from presymptomatic studies are lacking. Here, it was sought to increase the understanding of CMV in MS aetiology. METHODS: A nested case-control study was performed with presymptomatically collected blood samples identified through crosslinkage of MS registries and Swedish biobanks. Serological antibody response against CMV, EBV and HHV-6A was determined using a bead-based multiplex assay. Odds ratio (OR) with 95% confidence interval (CI) for CMV seropositivity as a risk factor for MS was calculated by conditional logistic regression and adjusted for EBV and HHV-6A seropositivity. Potential interactions on the additive scale were analysed by calculating the attributable proportion due to interaction (AP). RESULTS: Serum samples from 670 pairs of matched cases and controls were included. CMV seropositivity was associated with a reduced risk for MS (OR = 0.70, 95% CI 0.56-0.88, p = 0.003). Statistical interactions on the additive scale were observed between seronegativity for CMV and seropositivity against HHV-6A (AP 0.34, 95% CI 0.06-0.61) and EBV antigen EBNA-1 (amino acid 385-420) at age 20-39 years (AP 0.37, 95% CI 0.09-0.65). CONCLUSIONS: Cytomegalovirus seropositivity is associated with a decreased risk for MS. The protective role for CMV infection in MS aetiology is further supported by the interactions between CMV seronegativity and EBV and HHV-6A seropositivity.


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , Adult , Case-Control Studies , Cytomegalovirus , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Herpesvirus 4, Human , Humans , Multiple Sclerosis/epidemiology , Young Adult
14.
J Am Chem Soc ; 142(5): 2110-2114, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31985216

ABSTRACT

Unnatural base pairs (UBPs) have been developed and used for a variety of in vitro applications as well as for the engineering of semisynthetic organisms (SSOs) that store and retrieve increased information. However, these applications are limited by the availability of methods to rapidly and accurately determine the sequence of unnatural DNA. Here we report the development and application of the MspA nanopore to sequence DNA containing the dTPT3-dNaM UBP. Analysis of two sequence contexts reveals that DNA containing the UBP is replicated with an efficiency and fidelity similar to that of natural DNA and sufficient for use as the basis of an SSO that produces proteins with noncanonical amino acids.


Subject(s)
Base Pairing , Genetic Code , Nanopores , Hydrophobic and Hydrophilic Interactions
16.
Anal Chem ; 90(7): 4293-4296, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29508618

ABSTRACT

One approach to mitigate product clipping during HIV mAb CAP256-VRC26.25 cell-culture development is the addition of the protease inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF) to the cell-culture media. AEBSF can undergo hydrolysis to form an inactive compound, 4-(2-aminoethyl) benzenesulfonic acid. Using mass-spectrometry detection, a kinetic profile of AEBSF hydrolysis was generated for conditions simulating those of cell culture at pH 7.0 and 37 °C. It was found that increasing the pH or the temperature could accelerate AEBSF hydrolysis. The kinetic-study results in this report provide an analytical characterization and guidance when optimizing an AEBSF-addition strategy for product-clipping control during cell-culture development and offer an alternative approach for AEBSF-related clearance studies post protein production.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Benzenesulfonates/chemistry , Culture Media/chemistry , HIV Antibodies/immunology , HIV-1/immunology , Protease Inhibitors/chemistry , Antigen-Antibody Reactions , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mass Spectrometry , Molecular Structure , Temperature
18.
Curr Protoc ; 4(1): e972, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282528

ABSTRACT

The many logistical and technical challenges associated with sample and data handling in largescale genotyping studies can increase the risk of sample misidentification, which may compromise subsequent analyses. However, the standard quality assurance methods typical for large genotyping arrays can often be further utilized to identify and recover problematic samples. This article emphasizes the importance of identifying and correcting underlying sample misidentification rather than simply excluding known discrepancies, which may potentially include undetected issues. Lastly, we provide a screening protocol to complement standard quality assessments as a guideline for identifying mismatched samples and a tool for assessing the most common causes of sample misidentification. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC.


Subject(s)
Cluster Analysis , Data Analysis , Genotyping Techniques
19.
Curr Protoc ; 3(4): e727, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37026777

ABSTRACT

Genetics is a cornerstone of molecular biology, and there have been significant developments in genotyping technologies during the last decades. Genotyping can be used for a wide range of applications, such as genealogy, assessing risks and causes for common diseases and health conditions, animal and human research, and forensic investigations. So how do you perform a genetic study? This overview covers key concepts in genetics, the development of common genotyping methods, and a comparison of several techniques, including PCR, microarrays, and sequencing. A general process of the steps involved in genotyping, from DNA preparation to quality control, is described with relevant protocols referenced. Different types of DNA variants are illustrated, including mutations, SNP, insertions, deletions, microsatellites, and copy number variations, with examples of their involvement in disease. We discuss the utilities of genotyping, such as medical genetics, genome-wide association studies (GWAS), and forensic science. We also provide tips for quality control, analysis, and results interpretation to help the reader design and perform a genetic study or scrutinize such studies from the literature. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , Humans , Genotype , Genotyping Techniques , DNA
20.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37066208

ABSTRACT

Eukaryotic reverse transcriptases (RTs) can have essential or deleterious roles in normal human physiology and disease. Compared to well-studied helicases, it remains unclear how RTs overcome the ubiquitous RNA structural barriers during reverse transcription. Herein, we describe the development of a Mycobacterium smegmatis porin A (MspA) nanopore technique to sequence RNA to quantify the single-molecule kinetics of an RT from Bombyx mori with single-nucleotide resolution. By establishing a quadromer map that correlates RNA sequence and MspA ion current, we were able to quantify the RT's dwell time at every single nucleotide step along its RNA template. By challenging the enzyme with various RNA structures, we found that during cDNA synthesis the RT can sense and actively destabilize RNA structures 11-12 nt downstream of its front boundary. The ability to sequence single molecules of RNA with nanopores paves the way to investigate the single-nucleotide activity of other processive RNA translocases.

SELECTION OF CITATIONS
SEARCH DETAIL