Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Cell ; 185(19): 3617-3636.e19, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36070752

ABSTRACT

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli , Feces , Gastrointestinal Microbiome/genetics , Germ-Free Life , Humans , Mice
2.
Cell ; 174(2): 253-255, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007414

ABSTRACT

The cytoplasm is a highly crowded and complex environment, and the regulation of its physical properties has only recently begun to be revealed. In this issue of Cell, Delarue et al. demonstrate that the control of ribosome concentration through mTORC1 sets limits on the diffusion of large particles and controls phase separation in eukaryotic cells.


Subject(s)
Eukaryotic Cells , Ribosomes , Biophysics , Cytoplasm , Diffusion , Mechanistic Target of Rapamycin Complex 1
3.
Cell ; 172(6): 1294-1305, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29522748

ABSTRACT

Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes.


Subject(s)
Cell Membrane/genetics , Cell Wall/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Cell Membrane/metabolism , Cell Wall/metabolism , Escherichia coli/cytology , Escherichia coli/growth & development , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Models, Molecular , Mutation , Protein Conformation
4.
Cell ; 173(7): 1742-1754.e17, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29906449

ABSTRACT

Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains in vitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.


Subject(s)
Diarrhea/pathology , Gastrointestinal Microbiome/drug effects , Polyethylene Glycols/pharmacology , Animals , Bacteroidetes/drug effects , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cecum/chemistry , Cecum/metabolism , Cecum/microbiology , Cecum/pathology , Colon/chemistry , Colon/microbiology , Colon/pathology , Cytokines/metabolism , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/veterinary , Feces/microbiology , Glycoside Hydrolases/metabolism , Humans , Immunity, Humoral/drug effects , Immunoglobulin G/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Metagenomics , Mice , Osmolar Concentration , Polyethylene Glycols/metabolism , Proteome/analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/drug effects , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
5.
Cell ; 168(1-2): 15-17, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28086088

ABSTRACT

While chemical forms of cell-to-cell communication are well recognized to coordinate bacterial populations, electrical signaling has been relatively ignored. Humphries et al. show that Bacillus subtilis biofilms utilize potassium production to attract far away, motile cells of even phylogenetically distant species by altering their membrane potential.


Subject(s)
Bacillus subtilis , Biofilms
6.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28086090

ABSTRACT

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Subject(s)
Vibrio cholerae/cytology , Vibrio cholerae/pathogenicity , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Locomotion , Mice , Peptidoglycan/metabolism , Periplasm/metabolism , Sequence Alignment , Vibrio cholerae/genetics , Vibrio cholerae/metabolism , Virulence
7.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27238023

ABSTRACT

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Subject(s)
Bacillus subtilis/genetics , Genes, Bacterial , Genes, Essential , CRISPR-Cas Systems , Gene Knockdown Techniques , Gene Library , Gene Regulatory Networks , Molecular Targeted Therapy
8.
Nature ; 617(7961): 581-591, 2023 May.
Article in English | MEDLINE | ID: mdl-37165188

ABSTRACT

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Intestines , Metabolome , Proteome , Humans , Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/physiology , Proteome/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteriophages/isolation & purification , Bacteriophages/physiology , Feces/chemistry , Feces/microbiology , Feces/virology , Intestines/chemistry , Intestines/metabolism , Intestines/microbiology , Intestines/physiology , Intestines/virology , Digestion/physiology
9.
Mol Cell ; 81(10): 2201-2215.e9, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34019789

ABSTRACT

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Mutation/genetics , Amdinocillin/pharmacology , Bacterial Proteins/metabolism , Cell Death/drug effects , Chromosomes, Bacterial/genetics , Cytoprotection/drug effects , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/drug effects , Mutagenesis, Insertional/genetics , Peptides/metabolism , Phenotype , Structure-Activity Relationship , Transcription, Genetic , Uridine Diphosphate Glucose/metabolism
10.
Cell ; 169(1): 174-175, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28340342
11.
Mol Cell ; 70(5): 765-767, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29883604

ABSTRACT

The gut microbiota plays a central role in human health. Studies by Tramontano et al. (2018) and Maier et al. (2018) improve our understanding of the metabolism and pharmaceutical impact of human gut bacteria through high-throughput screening of growth in the presence of different nutrients and drugs, respectively.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria , Humans
12.
Nat Chem Biol ; 19(12): 1469-1479, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37349583

ABSTRACT

Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.


Subject(s)
Bacteroides thetaiotaomicron , Diabetes Mellitus, Type 2 , Humans , Dipeptidyl Peptidase 4/genetics , Serine
13.
PLoS Biol ; 20(9): e3001727, 2022 09.
Article in English | MEDLINE | ID: mdl-36067229

ABSTRACT

Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.


Subject(s)
Gene Transfer Techniques , Genes, Bacterial , Microfluidics , Bifidobacterium longum/genetics , Electroporation/methods , Escherichia coli/genetics , Gene Transfer Techniques/instrumentation , Microfluidics/methods , Transformation, Bacterial/genetics
14.
Proc Natl Acad Sci U S A ; 119(41): e2200728119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191183

ABSTRACT

Bacterial growth is remarkably robust to environmental fluctuations, yet the mechanisms of growth-rate homeostasis are poorly understood. Here, we combine theory and experiment to infer mechanisms by which Escherichia coli adapts its growth rate in response to changes in osmolarity, a fundamental physicochemical property of the environment. The central tenet of our theoretical model is that cell-envelope expansion is only sensitive to local information, such as enzyme concentrations, cell-envelope curvature, and mechanical strain in the envelope. We constrained this model with quantitative measurements of the dynamics of E. coli elongation rate and cell width after hyperosmotic shock. Our analysis demonstrated that adaptive cell-envelope softening is a key process underlying growth-rate homeostasis. Furthermore, our model correctly predicted that softening does not occur above a critical hyperosmotic shock magnitude and precisely recapitulated the elongation-rate dynamics in response to shocks with magnitude larger than this threshold. Finally, we found that, to coordinately achieve growth-rate and cell-width homeostasis, cells employ direct feedback between cell-envelope curvature and envelope expansion. In sum, our analysis points to cellular mechanisms of bacterial growth-rate homeostasis and provides a practical theoretical framework for understanding this process.


Subject(s)
Cell Wall , Escherichia coli , Bacteria , Cell Cycle , Feedback
15.
Nature ; 559(7715): 617-621, 2018 07.
Article in English | MEDLINE | ID: mdl-30022160

ABSTRACT

Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.


Subject(s)
Cell Membrane/metabolism , Cell Wall/metabolism , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/metabolism , Cell Membrane/drug effects , Cell Wall/drug effects , Detergents/pharmacology , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/metabolism , Gram-Negative Bacteria/drug effects , Microbial Viability/drug effects , Weight-Bearing
16.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34117124

ABSTRACT

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Subject(s)
Cytoplasm/physiology , Escherichia coli/physiology , Carbon/deficiency , Carbon/pharmacology , Cytoplasm/drug effects , DNA Replication/drug effects , Down-Regulation/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Ion Channels/metabolism , Mechanotransduction, Cellular/drug effects , Nitrogen/analysis , Phosphorus/analysis
17.
PLoS Biol ; 18(11): e3000786, 2020 11.
Article in English | MEDLINE | ID: mdl-33156840

ABSTRACT

Single-cell imaging, combined with recent advances in image analysis and microfluidic technologies, have enabled fundamental discoveries of cellular responses to chemical perturbations that are often obscured by traditional liquid-culture experiments. Temperature is an environmental variable well known to impact growth and to elicit specific stress responses at extreme values; it is often used as a genetic tool to interrogate essential genes. However, the dynamic effects of temperature shifts have remained mostly unstudied at the single-cell level, due largely to engineering challenges related to sample stability, heatsink considerations, and temperature measurement and feedback. Additionally, the few commercially available temperature-control platforms are costly. Here, we report an inexpensive (<$110) and modular Single-Cell Temperature Controller (SiCTeC) device for microbial imaging-based on straightforward modifications of the typical slide-sample-coverslip approach to microbial imaging-that controls temperature using a ring-shaped Peltier module and microcontroller feedback. Through stable and precise (±0.15°C) temperature control, SiCTeC achieves reproducible and fast (1-2 min) temperature transitions with programmable waveforms between room temperature and 45°C with an air objective. At the device's maximum temperature of 89°C, SiCTeC revealed that Escherichia coli cells progressively shrink and lose cellular contents. During oscillations between 30°C and 37°C, cells rapidly adapted their response to temperature upshifts. Furthermore, SiCTeC enabled the discovery of rapid morphological changes and enhanced sensitivity to substrate stiffness during upshifts to nonpermissive temperatures in temperature-sensitive mutants of cell-wall synthesis enzymes. Overall, the simplicity and affordability of SiCTeC empowers future studies of the temperature dependence of single-cell physiology.


Subject(s)
Heating/instrumentation , Microfluidic Analytical Techniques/methods , Single-Cell Analysis/methods , Equipment Design/instrumentation , Escherichia coli/genetics , Temperature , Thermometers
18.
PLoS Biol ; 18(1): e3000567, 2020 01.
Article in English | MEDLINE | ID: mdl-31986129

ABSTRACT

Cell- and tissue-level processes often occur across days or weeks, but few imaging methods can capture such long timescales. Here, we describe Bellymount, a simple, noninvasive method for longitudinal imaging of the Drosophila abdomen at subcellular resolution. Bellymounted animals remain live and intact, so the same individual can be imaged serially to yield vivid time series of multiday processes. This feature opens the door to longitudinal studies of Drosophila internal organs in their native context. Exploiting Bellymount's capabilities, we track intestinal stem cell lineages and gut microbial colonization in single animals, revealing spatiotemporal dynamics undetectable by previously available methods.


Subject(s)
Anatomy, Cross-Sectional/methods , Drosophila/anatomy & histology , Gastrointestinal Microbiome , Intravital Microscopy/methods , Viscera/anatomy & histology , Age Factors , Animals , Drosophila/microbiology , Intestines/anatomy & histology , Intestines/diagnostic imaging , Optical Imaging/methods , Viscera/diagnostic imaging
19.
Proc Natl Acad Sci U S A ; 117(43): 26907-26914, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33046656

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and ß-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ∆yhdP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.


Subject(s)
Escherichia coli Proteins/physiology , Membrane Proteins/physiology , Phospholipid Transfer Proteins/physiology , Phospholipids/metabolism , Escherichia coli K12
20.
BMC Biol ; 20(1): 285, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36527020

ABSTRACT

BACKGROUND: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development. RESULTS: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data. CONCLUSION: We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.


Subject(s)
Bacteroides thetaiotaomicron , Humans , Mutagenesis, Insertional , Bacteroides thetaiotaomicron/genetics , DNA Transposable Elements , Gene Library , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL