Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Circulation ; 149(12): 944-962, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38126211

ABSTRACT

BACKGROUND: Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known. METHODS: We used BMP (bone morphogenetic protein) 9/10 blocking antibodies and endothelial-specific deletion of activin A receptor like type 1 (Alk1) to induce HHT in Fucci (fluorescent ubiquitination-based cell cycle indicator) 2 mice to assess endothelial cell cycle states in AVMs. We also assessed the therapeutic potential of inducing endothelial cell cycle G1 state in HHT to prevent AVMs by repurposing the Food and Drug Administration-approved CDK (cyclin-dependent kinase) 4/6 inhibitor (CDK4/6i) palbociclib. RESULTS: We found that endothelial cell cycle state and associated gene expressions are dysregulated during the pathogenesis of vascular malformations in HHT. We also showed that palbociclib treatment prevented AVM development induced by BMP9/10 inhibition and Alk1 genetic deletion. Mechanistically, endothelial cell late G1 state induced by palbociclib modulates the expression of genes regulating arteriovenous identity, endothelial cell migration, metabolism, and VEGF-A (vascular endothelial growth factor A) and BMP9 signaling that collectively contribute to the prevention of vascular malformations. CONCLUSIONS: This study provides new insights into molecular mechanisms leading to HHT by defining how endothelial cell cycle is dysregulated in AVMs because of BMP9/10 and Alk1 signaling deficiencies, and how restoration of endothelial cell cycle control may be used to treat AVMs in patients with HHT.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Mice , Animals , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Vascular Endothelial Growth Factor A/metabolism , Arteriovenous Malformations/metabolism , Endothelial Cells/metabolism , Growth Differentiation Factor 2/metabolism , Cell Cycle Checkpoints
2.
Circulation ; 148(15): 1165-1178, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37681311

ABSTRACT

BACKGROUND: Clonal hematopoiesis (CH), which results from an array of nonmalignant driver gene mutations, can lead to altered immune cell function and chronic disease, and has been associated with worse outcomes in patients with heart failure (HF) with reduced ejection fraction. However, the role of CH in the prognosis of HF with preserved ejection fraction (HFpEF) has been understudied. This study aimed to characterize CH in patients with HFpEF and elucidate its causal role in a murine model. METHODS: Using a panel of 20 candidate CH driver genes and a variant allele fraction cutoff of 0.5%, ultradeep error-corrected sequencing identified CH in a cohort of 81 patients with HFpEF (mean age, 71±6 years; ejection fraction, 63±5%) and 36 controls without a diagnosis of HFpEF (mean age, 74±7 years; ejection fraction, 61.5±8%). CH was also evaluated in a replication cohort of 59 individuals with HFpEF. RESULTS: Compared with controls, there was an enrichment of TET2-mediated CH in the HFpEF patient cohort (12% versus 0%, respectively; P=0.02). In the HFpEF cohort, patients with CH exhibited exacerbated diastolic dysfunction in terms of E/e' (14.9 versus 11.7, respectively; P=0.0096) and E/A (1.69 versus 0.89, respectively; P=0.0206) compared with those without CH. The association of CH with exacerbated diastolic dysfunction was corroborated in a validation cohort of individuals with HFpEF. In accordance, patients with HFpEF, an age ≥70 years, and CH exhibited worse prognosis in terms of 5-year cardiovascular-related hospitalization rate (hazard ratio, 5.06; P=0.042) compared with patients with HFpEF and an age ≥70 years without CH. To investigate the causal role of CH in HFpEF, nonconditioned mice underwent adoptive transfer with Tet2-wild-type or Tet2-deficient bone marrow and were subsequently subjected to a high-fat diet/L-NAME (Nω-nitro-l-arginine methyl ester) combination treatment to induce features of HFpEF. This model of Tet2-CH exacerbated cardiac hypertrophy by heart weight/tibia length and cardiomyocyte size, diastolic dysfunction by E/e' and left ventricular end-diastolic pressure, and cardiac fibrosis compared with the Tet2-wild-type condition. CONCLUSIONS: CH is associated with worse heart function and prognosis in patients with HFpEF, and a murine experimental model of Tet2-mediated CH displays greater features of HFpEF.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Humans , Mice , Animals , Aged , Aged, 80 and over , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/drug therapy , Stroke Volume , Ventricular Function, Left , Clonal Hematopoiesis/genetics , Ventricular Dysfunction, Left/genetics
3.
Cell Rep ; 42(4): 112371, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37043357

ABSTRACT

The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.


Subject(s)
Connexin 43 , Lateral Ventricles , Endothelial Cells/metabolism , Brain/metabolism , Neurogenesis/physiology
4.
Nat Commun ; 13(1): 5891, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202789

ABSTRACT

During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-ß signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-ß1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.


Subject(s)
Endothelial Cells , Transforming Growth Factor beta1 , Animals , Arteries/metabolism , Cell Cycle , Endothelial Cells/metabolism , Mice , Oxygen/metabolism , Transforming Growth Factor beta1/metabolism , Veins
SELECTION OF CITATIONS
SEARCH DETAIL