Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sensors (Basel) ; 20(11)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498394

ABSTRACT

In tissue engineering, of utmost importance is the control of tissue formation, in order to form tissue constructs of clinical relevance. In this work, we present the use of an impedance spectroscopy technique for the real-time measurement of the dielectric properties of skeletal myoblast cell cultures. The processes involved in the growth and differentiation of these cell cultures in skeletal muscle are studied. A circuit based on the oscillation-based test technique was used, avoiding the use of high-performance circuitry or external input signals. The effect of electrical pulse stimulation applied to cell cultures was also studied. The technique proved useful for monitoring in real-time the processes of cell growth and estimating the fill factor of muscular stem cells. Impedance spectroscopy was also useful to study the real-time monitoring of cell differentiation, obtaining different oscillation amplitude levels for differentiated and undifferentiated cell cultures. Finally, an electrical model was implemented to better understand the physical properties of the cell culture and control the tissue formation process.


Subject(s)
Cell Culture Techniques , Electric Stimulation , Myoblasts, Skeletal/cytology , Tissue Engineering , Cell Differentiation , Humans
2.
Sensors (Basel) ; 19(21)2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31731413

ABSTRACT

High-throughput data analysis challenges in laboratory automation and lab-on-a-chip devices' applications are continuously increasing. In cell culture monitoring, specifically, the electrical cell-substrate impedance sensing technique (ECIS), has been extensively used for a wide variety of applications. One of the main drawbacks of ECIS is the need for implementing complex electrical models to decode the electrical performance of the full system composed by the electrodes, medium, and cells. In this work we present a new approach for the analysis of data and the prediction of a specific biological parameter, the fill-factor of a cell culture, based on a polynomial regression, data-analytic model. The method was successfully applied to a specific ECIS circuit and two different cell cultures, N2A (a mouse neuroblastoma cell line) and myoblasts. The data-analytic modeling approach can be used in the decoding of electrical impedance measurements of different cell lines, provided a representative volume of data from the cell culture growth is available, sorting out the difficulties traditionally found in the implementation of electrical models. This can be of particular importance for the design of control algorithms for cell cultures in tissue engineering protocols, and labs-on-a-chip and wearable devices applications.


Subject(s)
Cell Culture Techniques/methods , Electric Impedance , Models, Theoretical , Animals , Cell Count , Cell Culture Techniques/instrumentation , Cell Line , Electrodes , Mice , Myoblasts/cytology , Regression Analysis
3.
Sensors (Basel) ; 18(8)2018 Aug 03.
Article in English | MEDLINE | ID: mdl-30081533

ABSTRACT

A smart sensor system for cell culture real-time supervision is proposed, allowing for a significant reduction in human effort applied to this type of assay. The approach converts the cell culture under test into a suitable "biological" oscillator. The system enables the remote acquisition and management of the "biological" oscillation signals through a secure web interface. The indirectly observed biological properties are cell growth and cell number, which are straightforwardly related to the measured bio-oscillation signal parameters, i.e., frequency and amplitude. The sensor extracts the information without complex circuitry for acquisition and measurement, taking advantage of the microcontroller features. A discrete prototype for sensing and remote monitoring is presented along with the experimental results obtained from the performed measurements, achieving the expected performance and outcomes.


Subject(s)
Cell Culture Techniques/methods , Periodicity , Telemetry/methods , Cell Enlargement , Cell Proliferation
4.
Sensors (Basel) ; 18(7)2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30036948

ABSTRACT

This paper proposes a new yet efficient method allowing a significant improvement in the on-line analysis of biological cell growing and evolution. The procedure is based on an empirical-mathematical approach for calibration and fitting of any cell-electrode electrical model. It is valid and can be extrapolated for any type of cellular line used in electrical cell-substrate impedance spectroscopy (ECIS) tests. Parameters of the bioimpedance model, acquired from ECIS experiments, vary for each cell line, which makes obtaining results difficult and-to some extent-renders them inaccurate. We propose a fitting method based on the cell line initial characterization, and carry out subsequent experiments with the same line to approach the percentage of well filling and the cell density (or cell number in the well). To perform our calibration technique, the so-called oscillation-based test (OBT) approach is employed for each cell density. Calibration results are validated by performing other experiments with different concentrations on the same cell line with the same measurement technique. Accordingly, a bioimpedance electrical model of each cell line is determined, which is valid for any further experiment and leading to a more precise electrical model of the electrode-cell system. Furthermore, the model parameters calculated can be also used by any other measurement techniques. Promising experimental outcomes for three different cell-lines have been achieved, supporting the usefulness of this technique.

5.
Sensors (Basel) ; 17(8)2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28788093

ABSTRACT

To follow up the restenosis in arteries stented during an angioplasty is an important current clinical problem. A new approach to monitor the growth of neointimal tissue inside the stent is proposed on the basis of electrical impedance spectroscopy (EIS) sensors and the oscillation-based test (OBT) circuit technique. A mathematical model was developed to analytically describe the histological composition of the neointima, employing its conductivity and permittivity data. The bioimpedance model was validated against a finite element analysis (FEA) using COMSOL Multiphysics software. A satisfactory correlation between the analytical model and FEA simulation was achieved in most cases, detecting some deviations introduced by the thin "double layer" that separates the neointima and the blood. It is hereby shown how to apply conformal transformations to obtain bioimpedance electrical models for stack-layered tissues over coplanar electrodes. Particularly, this can be applied to characterize the neointima in real-time. This technique is either suitable as a main mechanism for restenosis follow-up or it can be combined with proposed intelligent stents for blood pressure measurements to auto-calibrate the sensibility loss caused by the adherence of the tissue on the micro-electro-mechanical sensors (MEMSs).


Subject(s)
Stents , Coronary Vessels , Dielectric Spectroscopy , Neointima
6.
Biosensors (Basel) ; 13(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37367033

ABSTRACT

Obtaining cell concentration measurements from a culture assay by using bioimpedance is a very useful method that can be used to translate impedances to cell concentration values. The purpose of this study was to find a method to obtain the cell concentration values of a given cell culture assay in real time by using an oscillator as the measurement circuit. From a basic cell-electrode model, enhanced models of a cell culture immersed in a saline solution (culture medium) were derived. These models were used as part of a fitting routine to estimate the cell concentration in a cell culture in real time by using the oscillation frequency and amplitude delivered by the measurement circuits proposed by previous authors. Using real experimental data (the frequency and amplitude of oscillations) that were obtained by connecting the cell culture to an oscillator as the load, the fitting routine was simulated, and real-time data of the cell concentration were obtained. These results were compared to concentration data that were obtained by using traditional optical methods for counting. In addition, the error that we obtained was divided and analyzed in two parts: the first part of the experiment (when the few cells were adapting to the culture medium) and the second part of the experiment (when the cells exponentially grew until they completely covered the well). Low error values were obtained during the growth phase of the cell culture (the relevant phase); therefore, the results obtained were considered promising and show that the fitting routine is valid and that the cell concentration can be measured in real time by using an oscillator.


Subject(s)
Cell Culture Techniques , Cell Culture Techniques/methods , Electrodes , Electric Impedance
7.
J Biol Eng ; 16(1): 27, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229846

ABSTRACT

BACKGROUND: Electrical stimulation is a novel tool to promote the differentiation and proliferation of precursor cells. In this work we have studied the effects of direct current (DC) electrical stimulation on neuroblastoma (N2a) and osteoblast (MC3T3) cell lines as a model for nervous and bone tissue regeneration, respectively. We have developed the electronics and encapsulation of a proposed stimulation system and designed a setup and protocol to stimulate cell cultures. METHODS: Cell cultures were subjected to several assays to assess the effects of electrical stimulation on them. N2a cells were analyzed using microscope images and an inmunofluorescence assay, differentiated cells were counted and neurites were measured. MC3T3 cells were subjected to an AlamarBlue assay for viability, ALP activity was measured, and a real time PCR was carried out. RESULTS: Our results show that electrically stimulated cells had more tendency to differentiate in both cell lines when compared to non-stimulated cultures, paired with a promotion of neurite growth and polarization in N2a cells and an increase in proliferation in MC3T3 cell line. CONCLUSIONS: These results prove the effectiveness of electrical stimulation as a tool for tissue engineering and regenerative medicine, both for neural and bone injuries. Bone progenitor cells submitted to electrical stimulation have a higher tendency to differentiate and proliferate, filling the gaps present in injuries. On the other hand, neuronal progenitor cells differentiate, and their neurites can be polarized to follow the electric field applied.

8.
Sci Rep ; 8(1): 8841, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29892009

ABSTRACT

An alternative approach for cell-culture end-point protocols is proposed herein. This new technique is suitable for real-time remote sensing. It is based on Electrical Cell-substrate Impedance Spectroscopy (ECIS) and employs the Oscillation-Based Test (OBT) method. Simple and straightforward circuit blocks form the basis of the proposed measurement system. Oscillation parameters - frequency and amplitude - constitute the outcome, directly correlated with the culture status. A user can remotely track the evolution of cell cultures in real time over the complete experiment through a web tool continuously displaying the acquired data. Experiments carried out with commercial electrodes and a well-established cell line (AA8) are described, obtaining the cell number in real time from growth assays. The electrodes have been electrically characterized along the design flow in order to predict the system performance and the sensitivity curves. Curves for 1-week cell growth are reported. The obtained experimental results validate the proposed OBT for cell-culture characterization. Furthermore, the proposed electrode model provides a good approximation for the cell number and the time evolution of the studied cultures.


Subject(s)
Cell Culture Techniques/methods , Cell Proliferation , Costs and Cost Analysis , Dielectric Spectroscopy/methods , Remote Sensing Technology/methods , Animals , CHO Cells , Cell Culture Techniques/economics , Cricetinae , Cricetulus , Dielectric Spectroscopy/economics , Internet , Remote Sensing Technology/economics
SELECTION OF CITATIONS
SEARCH DETAIL