Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Ann Surg Oncol ; 25(7): 1880-1888, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29667116

ABSTRACT

BACKGROUND: Operative management of pancreatic ductal adenocarcinoma (PDAC) is complicated by several key decisions during the procedure. Identification of metastatic disease at the outset and, when none is found, complete (R0) resection of primary tumor are key to optimizing clinical outcomes. The use of tumor-targeted molecular imaging, based on photoacoustic and fluorescence optical imaging, can provide crucial information to the surgeon. The first-in-human use of multimodality molecular imaging for intraoperative detection of pancreatic cancer is reported using cetuximab-IRDye800, a near-infrared fluorescent agent that binds to epidermal growth factor receptor. METHODS: A dose-escalation study was performed to assess safety and feasibility of targeting and identifying PDAC in a tumor-specific manner using cetuximab-IRDye800 in patients undergoing surgical resection for pancreatic cancer. Patients received a loading dose of 100 mg of unlabeled cetuximab before infusion of cetuximab-IRDye800 (50 mg or 100 mg). Multi-instrument fluorescence imaging was performed throughout the surgery in addition to fluorescence and photoacoustic imaging ex vivo. RESULTS: Seven patients with resectable pancreatic masses suspected to be PDAC were enrolled in this study. Fluorescence imaging successfully identified tumor with a significantly higher mean fluorescence intensity in the tumor (0.09 ± 0.06) versus surrounding normal pancreatic tissue (0.02 ± 0.01), and pancreatitis (0.04 ± 0.01; p < 0.001), with a sensitivity of 96.1% and specificity of 67.0%. The mean photoacoustic signal in the tumor site was 3.7-fold higher than surrounding tissue. CONCLUSIONS: The safety and feasibilty of intraoperative, tumor-specific detection of PDAC using cetuximab-IRDye800 with multimodal molecular imaging of the primary tumor and metastases was demonstrated.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Fluorescent Dyes/chemistry , Intraoperative Care , Molecular Imaging/methods , Multimodal Imaging/methods , Pancreatic Neoplasms/pathology , Antineoplastic Agents, Immunological/chemistry , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/surgery , Cetuximab/chemistry , Cohort Studies , Follow-Up Studies , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Prognosis , Spectroscopy, Near-Infrared/methods
2.
Sci Rep ; 11(1): 12509, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131163

ABSTRACT

Otitis media, a common disease marked by the presence of fluid within the middle ear space, imparts a significant global health and economic burden. Identifying an effusion through the tympanic membrane is critical to diagnostic success but remains challenging due to the inherent limitations of visible light otoscopy and user interpretation. Here we describe a powerful diagnostic approach to otitis media utilizing advancements in otoscopy and machine learning. We developed an otoscope that visualizes middle ear structures and fluid in the shortwave infrared region, holding several advantages over traditional approaches. Images were captured in vivo and then processed by a novel machine learning based algorithm. The model predicts the presence of effusions with greater accuracy than current techniques, offering specificity and sensitivity over 90%. This platform has the potential to reduce costs and resources associated with otitis media, especially as improvements are made in shortwave imaging and machine learning.


Subject(s)
Ear, Middle/diagnostic imaging , Machine Learning , Otitis Media with Effusion/diagnosis , Otoscopy/methods , Algorithms , Ear, Middle/pathology , Humans , Otitis Media/diagnosis , Otitis Media/diagnostic imaging , Otitis Media/pathology , Otitis Media with Effusion/diagnostic imaging , Otitis Media with Effusion/pathology , Radio Waves
3.
ACS Sens ; 5(11): 3411-3419, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33175516

ABSTRACT

Otitis media (OM) or middle ear infection is one of the most common diseases in young children around the world. The diagnosis of OM is currently performed using an otoscope to detect middle ear fluid and inflammatory changes manifested in the tympanic membrane. However, conventional otoscopy cannot visualize across the tympanic membrane or sample middle ear fluid. This can lead to low diagnostic certainty and overdiagnoses of OM. To improve the diagnosis of OM, we have developed a short-wave infrared (SWIR) otoscope in combination with a protease-cleavable biosensor, 6QC-ICG, which can facilitate the detection of inflammatory proteases in the middle ear with an increase in contrast. 6QC-ICG is a fluorescently quenched probe, which is activated in the presence of cysteine cathepsin proteases that are up-regulated in inflammatory immune cells. Using a preclinical model and custom-built SWIR otomicroscope in this proof-of-concept study, we successfully demonstrated the feasibility of robustly distinguishing inflamed ears from controls (p = 0.0006). The inflamed ears showed an overall signal-to-background ratio of 2.0 with a mean fluorescence of 81 ± 17 AU, while the control ear exhibited a mean fluorescence of 41 ± 11 AU. We envision that these fluorescently quenched probes in conjunction with SWIR imaging tools have the potential to be used as an alternate/adjunct tool for objective diagnosis of OM.


Subject(s)
Otitis Media with Effusion , Otitis Media , Child , Child, Preschool , Ear, Middle , Fluorescence , Humans , Otitis Media/diagnosis , Otoscopy
4.
Photoacoustics ; 14: 77-98, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31293884

ABSTRACT

Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.

5.
Sci Transl Med ; 11(507)2019 08 28.
Article in English | MEDLINE | ID: mdl-31462508

ABSTRACT

Imaging technologies that simultaneously provide anatomical, functional, and molecular information are emerging as an attractive choice for disease screening and management. Since the 1980s, transrectal ultrasound (TRUS) has been routinely used to visualize prostatic anatomy and guide needle biopsy, despite limited specificity. Photoacoustic imaging (PAI) provides functional and molecular information at ultrasonic resolution based on optical absorption. Combining the strengths of TRUS and PAI approaches, we report the development and bench-to-bedside translation of an integrated TRUS and photoacoustic (TRUSPA) device. TRUSPA uses a miniaturized capacitive micromachined ultrasonic transducer array for simultaneous imaging of anatomical and molecular optical contrasts [intrinsic: hemoglobin; extrinsic: intravenous indocyanine green (ICG)] of the human prostate. Hemoglobin absorption mapped vascularity of the prostate and surroundings, whereas ICG absorption enhanced the intraprostatic photoacoustic contrast. Future work using the TRUSPA device for biomarker-specific molecular imaging may enable a fundamentally new approach to prostate cancer diagnosis, prognostication, and therapeutic monitoring.


Subject(s)
Photoacoustic Techniques/methods , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Ultrasonography/methods , Animals , Contrast Media/analysis , Humans , Indocyanine Green/analysis , Male , Mice , Mice, Nude , Prospective Studies
6.
Transl Androl Urol ; 3(1): 77-83, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-25741460

ABSTRACT

Multiphoton microscopy (MPM) enables real-time imaging of various cellular processes at submicron resolution. MPM is currently being used in neuroscience, oncology, and immunology. MPM has demonstrated promising results in urology. MPM has been used in the identification of spermatogenesis, evaluation of bladder cancer, and tissue identification in prostate cancer surgery. MPM has allowed the visualization of seminiferous tubules within the testis in a rat model and identified areas of spermatogenesis. MPM could potentially improve the efficacy of testicular sperm extraction. In bladder cancer evaluation, MPM has proven to be an effective imaging tool in identifying areas suspicious for malignancy. The imaging technology could be utilized in the future to provide urologists with an immediate impression of extracted bladder tissue, or as part of a cystoscopic device to evaluate the bladder in real time. Similarly, MPM has proven to be a useful imaging technique to evaluate prostate cancer. MPM could be utilized during a prostatectomy to help differentiate prostate from cavernous nerves that are closely adherent to the prostate. MPM uses a laser and safety studies will need to be performed prior to its utilization in the clinical setting.

7.
J Biomed Opt ; 19(11): 116011, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25415446

ABSTRACT

Multiphoton microscopy can instantly visualize cellular details in unstained tissues. Multiphoton probes with clinical potential have been developed. This study evaluates the suitability of multiphoton gradient index (GRIN) endoscopy as a diagnostic tool for prostatic tissue. A portable and compact multiphoton endoscope based on a 1-mm diameter, 8-cm length GRIN lens system probe was used. Fresh ex vivo samples were obtained from 14 radical prostatectomy patients and benign and malignant areas were imaged and correlated with subsequent H&E sections. Multiphoton GRIN endoscopy images of unfixed and unprocessed prostate tissue at a subcellular resolution are presented. We note several differences and identifying features of benign versus low-grade versus high-grade tumors and are able to identify periprostatic tissues such as adipocytes, periprostatic nerves, and blood vessels. Multiphoton GRIN endoscopy can be used to identify both benign and malignant lesions in ex vivo human prostate tissue and may be a valuable diagnostic tool for real-time visualization of suspicious areas of the prostate.


Subject(s)
Endoscopy/instrumentation , Microscopy, Fluorescence, Multiphoton/instrumentation , Prostate/chemistry , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/pathology , Adult , Aged , Endoscopy/methods , Equipment Design , Humans , Male , Microscopy, Fluorescence, Multiphoton/methods , Middle Aged , Prostate/anatomy & histology
8.
Biomed Opt Express ; 4(5): 652-8, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23667782

ABSTRACT

We present a compact and portable three-photon gradient index (GRIN) lens endoscope system suitable for imaging of unstained tissues, potentially deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The lateral and axial resolution in water is 1.0 µm and 9.5 µm, respectively. The ~200 µm diameter field of view is imaged at 2 frames/s using a fiber-based excitation source at 1040 nm. Ex vivo imaging is demonstrated with unstained mouse lung at 5.9 mW average power. These results demonstrate the feasibility of three-photon GRIN lens endoscopy for optical biopsy.

9.
Biomed Opt Express ; 3(5): 1077-85, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22567597

ABSTRACT

We characterize long (up to 285 mm) gradient index (GRIN) lens endoscope systems for multiphoton imaging. We fabricate a portable, rigid endoscope system suitable for imaging unstained tissues, potentially deep within the body, using a GRIN lens system of 1 mm diameter and 8 cm length. The portable device is capable of imaging a ~200 µm diameter field of view at 4 frames/s. The lateral and axial resolution in water is 0.85 µm and 7.4 µm respectively. In vivo images of unstained tissues in live, anesthetized rats using the portable device are presented. These results show great promise for GRIN endoscopy to be used clinically.

SELECTION OF CITATIONS
SEARCH DETAIL