Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Physiol ; 602(1): 49-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38156943

ABSTRACT

Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.


Subject(s)
Hypertension , Sleep Apnea Syndromes , Mice , Male , Animals , Mice, Inbred C57BL , Heart Atria/metabolism , Hypoxia
2.
BMC Bioinformatics ; 20(1): 457, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31492098

ABSTRACT

BACKGROUND: Mathematics and Phy sics-based simulation models have the potential to help interpret and encapsulate biological phenomena in a computable and reproducible form. Similarly, comprehensive descriptions of such models help to ensure that such models are accessible, discoverable, and reusable. To this end, researchers have developed tools and standards to encode mathematical models of biological systems enabling reproducibility and reuse, tools and guidelines to facilitate semantic description of mathematical models, and repositories in which to archive, share, and discover models. Scientists can leverage these resources to investigate specific questions and hypotheses in a more efficient manner. RESULTS: We have comprehensively annotated a cohort of models with biological semantics. These annotated models are freely available in the Physiome Model Repository (PMR). To demonstrate the benefits of this approach, we have developed a web-based tool which enables users to discover models relevant to their work, with a particular focus on epithelial transport. Based on a semantic query, this tool will help users discover relevant models, suggesting similar or alternative models that the user may wish to explore or use. CONCLUSION: The semantic annotation and the web tool we have developed is a new contribution enabling scientists to discover relevant models in the PMR as candidates for reuse in their own scientific endeavours. This approach demonstrates how semantic web technologies and methodologies can contribute to biomedical and clinical research. The source code and links to the web tool are available at https://github.com/dewancse/model-discovery-tool.


Subject(s)
Models, Biological , Semantics , Humans , Patient-Specific Modeling , Reproducibility of Results , Software
3.
J Biomech Eng ; 140(2)2018 02 01.
Article in English | MEDLINE | ID: mdl-29247253

ABSTRACT

The role of computational modeling for biomechanics research and related clinical care will be increasingly prominent. The biomechanics community has been developing computational models routinely for exploration of the mechanics and mechanobiology of diverse biological structures. As a result, a large array of models, data, and discipline-specific simulation software has emerged to support endeavors in computational biomechanics. Sharing computational models and related data and simulation software has first become a utilitarian interest, and now, it is a necessity. Exchange of models, in support of knowledge exchange provided by scholarly publishing, has important implications. Specifically, model sharing can facilitate assessment of reproducibility in computational biomechanics and can provide an opportunity for repurposing and reuse, and a venue for medical training. The community's desire to investigate biological and biomechanical phenomena crossing multiple systems, scales, and physical domains, also motivates sharing of modeling resources as blending of models developed by domain experts will be a required step for comprehensive simulation studies as well as the enhancement of their rigor and reproducibility. The goal of this paper is to understand current perspectives in the biomechanics community for the sharing of computational models and related resources. Opinions on opportunities, challenges, and pathways to model sharing, particularly as part of the scholarly publishing workflow, were sought. A group of journal editors and a handful of investigators active in computational biomechanics were approached to collect short opinion pieces as a part of a larger effort of the IEEE EMBS Computational Biology and the Physiome Technical Committee to address model reproducibility through publications. A synthesis of these opinion pieces indicates that the community recognizes the necessity and usefulness of model sharing. There is a strong will to facilitate model sharing, and there are corresponding initiatives by the scientific journals. Outside the publishing enterprise, infrastructure to facilitate model sharing in biomechanics exists, and simulation software developers are interested in accommodating the community's needs for sharing of modeling resources. Encouragement for the use of standardized markups, concerns related to quality assurance, acknowledgement of increased burden, and importance of stewardship of resources are noted. In the short-term, it is advisable that the community builds upon recent strategies and experiments with new pathways for continued demonstration of model sharing, its promotion, and its utility. Nonetheless, the need for a long-term strategy to unify approaches in sharing computational models and related resources is acknowledged. Development of a sustainable platform supported by a culture of open model sharing will likely evolve through continued and inclusive discussions bringing all stakeholders at the table, e.g., by possibly establishing a consortium.


Subject(s)
Computer Simulation , Mechanical Phenomena , Biomechanical Phenomena
4.
Bull Math Biol ; 84(3): 35, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35092512
5.
J Physiol ; 594(23): 6817-6831, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27353233

ABSTRACT

KEY POINTS: The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models. We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML. By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity. We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology. The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. ABSTRACT: The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole-cell models and linking such models in multi-scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set of principles to address this consideration. The principles are illustrated with examples that couple electrophysiology, signalling, metabolism, gene regulation and synthetic biology, together forming an architectural prototype for whole-cell modelling (including human intervention) in CellML. Such models illustrate how testable units of quantitative biophysical simulation can be constructed. Finally, future relationships between modular models so constructed and Physiome frameworks and tools are discussed, with particular reference to how such frameworks and tools can in turn be extended to complement and gain more benefit from the results of applying the principles.


Subject(s)
Models, Biological , Physiological Phenomena , Humans , Software
6.
J Physiol ; 594(23): 6909-6928, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27506597

ABSTRACT

Computational models of many aspects of the mammalian cardiovascular circulation have been developed. Indeed, along with orthopaedics, this area of physiology is one that has attracted much interest from engineers, presumably because the equations governing blood flow in the vascular system are well understood and can be solved with well-established numerical techniques. Unfortunately, there have been only a few attempts to create a comprehensive public domain resource for cardiovascular researchers. In this paper we propose a roadmap for developing an open source cardiovascular circulation model. The model should be registered to the musculo-skeletal system. The computational infrastructure for the cardiovascular model should provide for near real-time computation of blood flow and pressure in all parts of the body. The model should deal with vascular beds in all tissues, and the computational infrastructure for the model should provide links into CellML models of cell function and tissue function. In this work we review the literature associated with 1D blood flow modelling in the cardiovascular system, discuss model encoding standards, software and a model repository. We then describe the coordinate systems used to define the vascular geometry, derive the equations and discuss the implementation of these coupled equations in the open source computational software OpenCMISS. Finally, some preliminary results are presented and plans outlined for the next steps in the development of the model, the computational software and the graphical user interface for accessing the model.


Subject(s)
Blood Circulation , Models, Cardiovascular , Cardiovascular Physiological Phenomena , Hemodynamics , Humans , Software
7.
Bioinformatics ; 31(8): 1331-3, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25481009

ABSTRACT

UNLABELLED: ICMA, a software framework to create 3D finite element models of the left ventricle from cardiac ultrasound or magnetic resonance imaging (MRI) data, has been made available as an open-source code. The framework is hardware vendor independent and uses speckle tracking (endocardial border detection) on ultrasound (MRI) imaging data in the form of DICOM. Standard American Heart Association segment-based strain analysis can be performed using a browser-based interface. The speckle tracking, border detection and model fitting methods are implemented in C++ using open-source tools. They are wrapped as web services and orchestrated via a JBOSS-based application server. AVAILABILITY AND IMPLEMENTATION: The source code for ICMA is freely available under MPL 1.1 or GPL 2.0 or LGPL 2.1 license at https://github.com/ABI-Software-Laboratory/ICMA and a standalone virtual machine at http://goo.gl/M4lJKH for download. CONTACT: r.jagir@auckland.ac.nz SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Diagnostic Imaging , Heart Ventricles/anatomy & histology , Heart/anatomy & histology , Models, Cardiovascular , Software , Databases, Factual , Humans
8.
J Physiol ; 591(8): 2055-66, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23401613

ABSTRACT

The genotype-phenotype map (GP map) concept applies to any time point in the ontogeny of a living system. It is the outcome of very complex dynamics that include environmental effects, and bridging the genotype-phenotype gap is synonymous with understanding these dynamics. The context for this understanding is physiology, and the disciplinary goals of physiology do indeed demand the physiological community to seek this understanding. We claim that this task is beyond reach without use of mathematical models that bind together genetic and phenotypic data in a causally cohesive way. We provide illustrations of such causally cohesive genotype-phenotype models where the phenotypes span from gene expression profiles to development of whole organs. Bridging the genotype-phenotype gap also demands that large-scale biological ('omics') data and associated bioinformatics resources be more effectively integrated with computational physiology than is currently the case. A third major element is the need for developing a phenomics technology way beyond current state of the art, and we advocate the establishment of a Human Phenome Programme solidly grounded on biophysically based mathematical descriptions of human physiology.


Subject(s)
Genotype , Models, Biological , Phenotype , Animals , Computational Biology , Humans
9.
PLoS Comput Biol ; 8(4): e1002459, 2012.
Article in English | MEDLINE | ID: mdl-22496634

ABSTRACT

Polymorphisms identified in genome-wide association studies of human traits rarely explain more than a small proportion of the heritable variation, and improving this situation within the current paradigm appears daunting. Given a well-validated dynamic model of a complex physiological trait, a substantial part of the underlying genetic variation must manifest as variation in model parameters. These parameters are themselves phenotypic traits. By linking whole-cell phenotypic variation to genetic variation in a computational model of a single heart cell, incorporating genotype-to-parameter maps, we show that genome-wide association studies on parameters reveal much more genetic variation than when using higher-level cellular phenotypes. The results suggest that letting such studies be guided by computational physiology may facilitate a causal understanding of the genotype-to-phenotype map of complex traits, with strong implications for the development of phenomics technology.


Subject(s)
Action Potentials/genetics , Calcium Signaling/physiology , Models, Genetic , Myocytes, Cardiac/physiology , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Animals , Cells, Cultured , Computer Simulation , Mice
10.
Bioinformatics ; 27(5): 743-4, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21216774

ABSTRACT

MOTIVATION: The Physiome Model Repository 2 (PMR2) software was created as part of the IUPS Physiome Project (Hunter and Borg, 2003), and today it serves as the foundation for the CellML model repository. Key advantages brought to the end user by PMR2 include: facilities for model exchange, enhanced collaboration and a detailed change history for each model. AVAILABILITY: PMR2 is available under an open source license at http://www.cellml.org/tools/pmr/; a fully functional instance of this software can be accessed at http://models.physiomeproject.org/.


Subject(s)
Computational Biology/methods , Databases, Factual , Models, Biological , Software , Internet
11.
Bioinformatics ; 27(16): 2288-95, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21737439

ABSTRACT

MOTIVATION: Integrative mathematical and statistical models of cardiac anatomy and physiology can play a vital role in understanding cardiac disease phenotype and planning therapeutic strategies. However, the accuracy and predictive power of such models is dependent upon the breadth and depth of noninvasive imaging datasets. The Cardiac Atlas Project (CAP) has established a large-scale database of cardiac imaging examinations and associated clinical data in order to develop a shareable, web-accessible, structural and functional atlas of the normal and pathological heart for clinical, research and educational purposes. A goal of CAP is to facilitate collaborative statistical analysis of regional heart shape and wall motion and characterize cardiac function among and within population groups. RESULTS: Three main open-source software components were developed: (i) a database with web-interface; (ii) a modeling client for 3D + time visualization and parametric description of shape and motion; and (iii) open data formats for semantic characterization of models and annotations. The database was implemented using a three-tier architecture utilizing MySQL, JBoss and Dcm4chee, in compliance with the DICOM standard to provide compatibility with existing clinical networks and devices. Parts of Dcm4chee were extended to access image specific attributes as search parameters. To date, approximately 3000 de-identified cardiac imaging examinations are available in the database. All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt). AVAILABILITY: http://www.cardiacatlas.org CONTACT: a.young@auckland.ac.nz SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Atlases as Topic , Databases, Factual , Heart/anatomy & histology , Models, Cardiovascular , Models, Statistical , Myocardium/pathology , Aged , Aged, 80 and over , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/pathology , Computational Biology , Diagnostic Imaging , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Software
12.
J Biomech Eng ; 134(7)2012 Jul.
Article in English | MEDLINE | ID: mdl-24763625

ABSTRACT

A theoretical model of the cross-linking topology of ventricular muscle tissue is developed. Using parameter estimation the terms of the theoretical model are estimated for normal and pathological conditions. The model represents the anisotropic structure of the tissue, reproduces published experimental data and characterizes the role of different tissue components in the observed macroscopic behavior. Changes in the material parameters are consistent with expected structural changes and the model is extended to reproduce force-Calcium relationships. Model results are invoked to argue that semisoft behavior and the material axis anisotropy arise from the constraints on the extracellular matrix cross-linking topology.


Subject(s)
Heart Ventricles/metabolism , Models, Biological , Myocardium/metabolism , Extracellular Space/metabolism , Myocardium/cytology , Stress, Mechanical
13.
Front Physiol ; 13: 837027, 2022.
Article in English | MEDLINE | ID: mdl-35399281

ABSTRACT

The value of digital twins for prototyping controllers or interventions in a sandbox environment are well-established in engineering and physics. However, this is challenging for biophysics trying to seamlessly compose models of multiple spatial and temporal scale behavior into the digital twin. Two challenges stand out as constraining progress: (i) ensuring physical consistency of conservation laws across composite models and (ii) drawing useful and timely clinical and scientific information from conceptually and computationally complex models. Challenge (i) can be robustly addressed with bondgraphs. However, challenge (ii) is exacerbated using this approach. The complexity question can be looked at from multiple angles. First from the perspective of discretizations that reflect underlying biophysics (functional tissue units) and secondly by exploring maximum entropy as the principle guiding multicellular biophysics. Statistical mechanics, long applied to understanding emergent phenomena from atomic physics, coupled with the observation that cellular architecture in tissue is orchestrated by biophysical constraints on metabolism and communication, shows conceptual promise. This architecture along with cell specific properties can be used to define tissue specific network motifs associated with energetic contributions. Complexity can be addressed based on energy considerations and finding mean measures of dependent variables. A probability distribution of the tissue's network motif can be approximated with exponential random graph models. A prototype problem shows how these approaches could be implemented in practice and the type of information that could be extracted.

14.
Annu Rev Biomed Data Sci ; 5: 341-366, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35576556

ABSTRACT

Modern biology and biomedicine are undergoing a big data explosion, needing advanced computational algorithms to extract mechanistic insights on the physiological state of living cells. We present the motivation for the Cell Physiome Project: a framework and approach for creating, sharing, and using biophysics-based computational models of single-cell physiology. Using examples in calcium signaling, bioenergetics, and endosomal trafficking, we highlight the need for spatially detailed, biophysics-based computational models to uncover new mechanisms underlying cell biology. We review progress and challenges to date toward creating cell physiome models. We then introduce bond graphs as an efficient way to create cell physiome models that integrate chemical, mechanical, electromagnetic, and thermal processes while maintaining mass and energy balance. Bond graphs enhance modularization and reusability of computational models of cells at scale. We conclude with a look forward at steps that will help fully realize this exciting new field of mechanistic biomedical data science.


Subject(s)
Models, Biological , Patient-Specific Modeling , Biophysics , Cell Physiological Phenomena
15.
iScience ; 25(7): 104600, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35800755

ABSTRACT

We developed a workflow using multi-scale and multi-disciplinary experimental and computational approaches to analyze C-looping (the first phase of cardiac looping) of the chick across four developing hearts. We provide the first 3D datasets for the C-looping heart with cell to organism level information, including datasets of heart images and segmented myocardial cells within the heart. We used these datasets to investigate, as a proof-of-concept, the differential spatiotemporal patterns of growth at both the cellular and tissue levels, and demonstrate how geometrical changes of C-looping at the tissue level are linked to growth features at the cellular level. Our methodological pipeline provides preliminary results for qualitative and quantitative evidence of various cellular and tissue features as potential candidates regarding the mechanism of C-looping. This pipeline can be used and extended in future studies to include larger specimen samples for detailed analyses of, and potentially new insights into, cardiac C-looping.

16.
Front Physiol ; 13: 965054, 2022.
Article in English | MEDLINE | ID: mdl-36176770

ABSTRACT

While ion channels and transporters involved in excitation-contraction coupling have been linked and constructed as comprehensive computational models, validation of whether each individual component of a model can be reused has not been previously attempted. Here we address this issue while using a novel modular modeling approach to investigate the underlying mechanism for the differences between left ventricle (LV) and right ventricle (RV). Our model was developed from modules constructed using the module assembly principles of the CellML model markup language. The components of three existing separate models of cardiac function were disassembled as to create smaller modules, validated individually, and then the component parts were combined into a new integrative model of a rat ventricular myocyte. The model was implemented in OpenCOR using the CellML standard in order to ensure reproducibility. Simulated action potential (AP), Ca2+ transient, and tension were in close agreement with our experimental measurements: LV AP showed a prolonged duration and a more prominent plateau compared with RV AP; Ca2+ transient showed prolonged duration and slow decay in LV compared to RV; the peak value and relaxation of tension were larger and slower, respectively, in LV compared to RV. Our novel approach of module-based mathematical modeling has established that the ionic mechanisms underlying the APs and Ca2+ handling play a role in the variation in force production between ventricles. This simulation process also provides a useful way to reuse and elaborate upon existing models in order to develop a new model.

17.
BMC Bioinformatics ; 12: 22, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21235804

ABSTRACT

BACKGROUND: Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs) for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. RESULTS: We have extended the Physiome Model Repository software to be fully revision history aware, by building it on top of Mercurial, an existing DVCS. We have demonstrated the utility of this approach, when used in conjunction with the model composition facilities in CellML, to build and understand more complex models. We have also demonstrated the ability of the repository software to present version history to casual users over the web, and to highlight specific versions which are likely to be useful to users. CONCLUSIONS: Providing facilities for maintaining and using revision history information is an important part of building a useful repository of computational models, as this information is useful both for understanding the source of and justification for parts of a model, and to facilitate automated processes such as merges. The availability of fully revision history aware repositories, and associated tools, will therefore be of significant benefit to the community.


Subject(s)
Computer Simulation , Models, Biological , Computational Biology , Software
18.
J Physiol ; 594(23): 6815-6816, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905135
19.
Skin Res Technol ; 17(2): 149-59, 2011 May.
Article in English | MEDLINE | ID: mdl-21241367

ABSTRACT

BACKGROUND: The mechanical properties of skin, and its ability to resist a wide range of deformations, are mainly determined by the collagen network within the dermis. AIMS: In order to quantify the structure-function relationship of skin, quantitative data on collagen orientation are acquired in this study. MATERIALS & METHODS: Saggital cryosections from the abdominal region of young pigs were stained with picrosirus red for collagen detection and images were acquired by confocal laser scanning microscopy (CLSM). Spatial distributions of collagen orientation were determined using a structure-tensor approach. Orientation data were fitted to a mixture of two von Mises distributions. RESULTS: It was observed that collagen is organised into large bundles in the reticular dermis that run obliquely between the epidermis to hypodermis along two predominant orientations. DISCUSSION: This distinct lattice structure was apparent in all sections, regardless of the sectioning orientation. Based on our observations from CLSM images,we propose a conceptual model expressed in terms of a density distribution function to describe collagen orientation. CONCLUSION: We demonstrate that two parameters of this distribution (the mean and spread parameter) may be directly determined using CLSM image analysis. An important advantage of this approach is that model parameters can be estimated directly from observable microstructural features.


Subject(s)
Collagen/physiology , Dermoscopy/methods , Microscopy, Confocal/methods , Models, Biological , Skin Physiological Phenomena , Animals , Collagen/ultrastructure , Dermis/physiology , Dermis/ultrastructure , Dermoscopy/instrumentation , Epidermis/physiology , Epidermis/ultrastructure , Swine
20.
WIREs Mech Dis ; 13(1): e1497, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32539232

ABSTRACT

Skin is our primary interface with the environment. A structurally and functionally complex organ that hosts a dynamic ecosystem of microbes, and synthesizes many compounds that affect our well-being and psychosocial interactions. It is a natural platform of signal exchange between internal organs, skin resident microbes, and the environment. These interactions have gained a great deal of attention due to the increased prevalence of atopic diseases, and the co-occurrence of multiple allergic diseases related to allergic sensitization in early life. Despite significant advances in experimentally characterizing the skin, its microbial ecology, and disease phenotypes, high-levels of variability in these characteristics even for the same clinical phenotype are observed. Addressing this variability and resolving the relevant biological processes requires a systems approach. This review presents some of our current understanding of the skin, skin-immune, skin-neuroendocrine, skin-microbiome interactions, and computer-based modeling approaches to simulate this ecosystem in the context of health and disease. The review highlights the need for a systems-based understanding of this sophisticated ecosystem. This article is categorized under: Infectious Diseases > Computational Models.


Subject(s)
Microbiota , Skin
SELECTION OF CITATIONS
SEARCH DETAIL