Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Environ Manage ; 294: 113012, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34118517

ABSTRACT

This study was conducted to assess arsenic (As) status and distribution in Usangu agroecosystem-Tanzania, including three land use. About 198 soil samples were collected in ten irrigation schemes in three land uses. Total and bioavailable As were determined by acid digestion (Aqua regia (AQ)) and Mehlich 3 method (M3) to estimate status, distribution and bioavailability. Arsenic concentration were variable among land use and irrigation schemes where total arsenic ranged 567.74-2909.84 µg/kg and bioavailable As ranged 26.17-712.37 µg/kg. About 12-16% of total arsenic were available for plant uptake. Approximately 86.53% of studied agricultural soils had total As concentration above Tanzania maximum allowable limit. Bioavailable As were lower compared to total As and were within the acceptable threshold. Total arsenic concentration were variable among schemes and higher values were observed in schemes which are highly intensified and mechanized. Thus, this study provides essential site specific preliminary baseline information for As status and distribution in agricultural soils to initiate monitoring and management strategies for increased land productivity and environmental safety.


Subject(s)
Arsenic , Soil Pollutants , Arsenic/analysis , Ecosystem , Environmental Monitoring , Soil Pollutants/analysis , Tanzania
2.
J Environ Manage ; 294: 112973, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34102465

ABSTRACT

The dramatic increase in world population underpins current escalating food demand, which requires increased productivity in the available arable land through agricultural intensification. Agricultural intensification involves increased agrochemicals use to increase land productivity. Increased uses of agrochemicals pose environmental and ecological risks such as contamination and water eutrophication. Consequently, toxic metals accumulate in plant products, thus entering the food chain leading to health concerns. To achieve this study, secondary data from peer-reviewed papers, universities, and government authorities were collected from a public database using Tanzania as a case study. Data from Science Direct, Web of Science, and other internet sources were gathered using specific keywords such as nutrient saturation and losses, water eutrophication, potentially toxic metal (PTEs), and impact of toxic metals on soils, water, and food safety. The reported toxic metal concentrations in agro-ecosystem worldwide are linked to agricultural intensification, mining, and urbanization. Statistical analysis of secondary data collected from East African agro-ecosystem had wide range of toxic metals concentration such as; mercury (0.001-11.0 mg Hg/kg), copper (0.14-312 mg Cu/kg), cadmium (0.02-13.8 mg Cd/kg), zinc (0.27-19.30 mg Zn/kg), lead (0.75-51.7 mg Pb/kg) and chromium (19.14-34.9 mg Cr/kg). In some cases, metal concentrations were above the FAO/WHO maximum permissible limits for soil health. To achieve high agricultural productivity and environmental safety, key research-informed policy needs are proposed: (i) development of regulatory guidelines for agrochemicals uses, (ii) establishment of agro-environmental quality indicators for soils and water assessment to monitor agro-ecosystem quality changes, and (iii) adoption of best farming practices such as split fertilization, cover cropping, reduced tillage, drip irrigation to ensure crop productivity and agro-ecosystem sustainability. Therefore, robust and representative evaluation of current soil contamination status, sources, and processes leading to pollution are paramount. To achieve safe and sustainable food production, management of potential toxic metal in agro-ecosystems is vital.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Ecosystem , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Tanzania
3.
Ecotoxicol Environ Saf ; 201: 110813, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32544745

ABSTRACT

The bioaccumulation potential and toxic effects of engineered nanomaterials (ENMs) to earthworms are poorly understood. Two studies were conducted following OECD TG 222 on Eisenia fetida to assess the effects of CdTe QDs with different coatings and soil ageing respectively. Earthworms were exposed to carboxylate (COOH), ammonium (NH4+), or polyethylene glycol (PEG) coated CdTe QDs, or a micron scale (bulk) CdTe material, at nominal concentrations of 50, 500 and 2000 mg CdTe QD kg-1 dry weight (dw) for 28 days in Lufa 2.2 soil. In the fresh soil study, earthworms accumulated similar amounts of Cd and Te in the CdTe-bulk exposures, while the accumulation of Cd was higher than Te during the exposures to CdTe QDs. However, neither the total Cd, nor Te concentrations in the earthworms, were easily explained by the extractable metal fractions in the soil or particle dissolution. There were no effects on survival, but some retardation of growth was observed at the higher doses. Inhibition of Na+/K+-ATPase activity with disturbances to tissue electrolytes, as well as tissue Cu and Mn were observed, but without depletion of total glutathione in the fresh soil experiment. Additionally, juvenile production was the most sensitive endpoint, with estimated nominal EC50 of values >2000, 108, 65, 96 mg CdTe kg-1 for bulk, PEG-, COOH- and NH4+-coated CdTe QDs, respectively. In the aged soil study, the accumulation of Cd and Te was higher than in the fresh soil study in all CdTe QD exposures. Survival of the adult worms was reduced in the top CdTe-COOH and -NH4+ QD exposures by 55 ±â€¯5 and 60 ±â€¯25%, respectively; and with decreases in growth. The nominal EC50 values for juvenile production in the aged soil were 165, 88, 78 and 63 mg CdTe kg-1 for bulk, PEG-, COOH- and NH4+-coated CdTe QDs, respectively. In conclusion, exposure to nanoscale CdTe QDs, regardless of coating, caused more severe toxic effects that the CdTe bulk material and the toxicity increased after soil ageing. There were some coating-mediated effects, likely due to differences in the metal content and behaviour of the materials.


Subject(s)
Cadmium Compounds/toxicity , Oligochaeta/drug effects , Quantum Dots/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Tellurium/toxicity , Animals , Bioaccumulation , Cadmium Compounds/chemistry , Cadmium Compounds/metabolism , Models, Theoretical , Oligochaeta/metabolism , Particle Size , Quantum Dots/chemistry , Quantum Dots/metabolism , Reproduction/drug effects , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Surface Properties , Tellurium/chemistry , Tellurium/metabolism , Time Factors
4.
Ecotoxicol Environ Saf ; 169: 225-231, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30448705

ABSTRACT

Mycotoxins are an important class of chemicals of emerging concern, recently detected in aquatic environments, potentially reflecting the influence of fungicide resistance and climatic factors on fungal diseases in agricultural crops. Zearalenone (ZON) is a mycotoxin formed by Fusarium spp. and is known for its biological activity in animal tissues; both in vitro and in vivo. ZON has been reported in US and Polish surface waters at 0.7 - 96 ng/L, with agricultural run-off and wastewater treatment plants being the likely sources of mycotoxins. As some mycotoxins can induce phytotoxicity, laboratory studies were conducted to evaluate the toxicity of ZON (as measured concentrations) to freshwater algae (Pseudokirchneriella subcapitata) and macrophytes (Lemna minor) following OECD test guidelines 201 and 221, respectively. Zinc sulphate was used as a positive control. In the OECD 201 algal static study (72 h at 24 ±â€¯1 °C), exposure to ZON gave average specific growth rate (cell density) EC50 and yield (cell density) EC50 values of > 3.1 and 0.92 (0.74 - 1.8) mg/L, respectively. ZON was less toxic in the OECD 221 static study and after 7 d at 24 ±â€¯1 °C. L. minor growth was significantly reduced based on frond number and frond area at 11.4 mg ZON/L, showing a higher tolerance than reported for other mycotoxins with Lemna spp. Chlorophyll fluorescence parameters were used as biomarkers of impacts on photosystem II efficiency, with no effect seen in algae but, with responses being observed in L. minor between 5.2 - 14.4 mg ZON/L. ZON toxicity seen here is not of immediate concern in context with environmental levels, but this study highlights that other freshwater organisms including algae are more sensitive to mycotoxins than Lemna sp., the only current source of toxicity data for freshwater plants.


Subject(s)
Araceae/drug effects , Microalgae/drug effects , Photosynthesis/drug effects , Zearalenone/toxicity , Animals , Araceae/growth & development , Araceae/physiology , Biomass , Chlorophyll/metabolism , Fresh Water/chemistry , Microalgae/growth & development , Microalgae/physiology
5.
Arch Toxicol ; 92(4): 1657-1661, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29549413

ABSTRACT

The advent of adverse outcome pathways (AOPs) has provided a new lexicon for description of mechanistic toxicology, and a renewed enthusiasm for exploring modes of action resulting in adverse health and environmental effects. In addition, AOPs have been used successfully as a framework for the design and development of non-animal approaches to toxicity testing. Although the value of AOPs is widely recognised, there remain challenges and opportunities associated with their use in practise. The purpose of this article is to consider specifically how the future trajectory of AOPs may provide a basis for addressing some of those challenges and opportunities.


Subject(s)
Adverse Outcome Pathways , Animal Testing Alternatives , Toxicity Tests , Animals , Humans , Risk Assessment
6.
Ecotoxicol Environ Saf ; 166: 462-473, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30296611

ABSTRACT

Engineered nanomaterials (ENMs) may be functionalised with a surface coating to enhance their properties, but the ecotoxicity of the coatings and how hazard changes with ageing in soil is poorly understood. This study determined the toxic effect of CuO ENMs with different chemical coatings on the earthworm (Eisenia fetida) in fresh soil, and then after one year in aged soil. In both experiments, earthworms were exposed for 14 days to the CuO materials at nominal concentrations of 200 and 1000 mg Cu kg-1 dry weight and compared to CuSO4. In the fresh soil experiment, CuO-COOH was found to be the most acutely toxic of the nanomaterials (survival, 20 ±â€¯50%), with tenfold increase of total Cu in the earthworms compared to controls. Sodium pump activity was reduced in most CuO ENM treatments, although not in the CuSO4 control. There was no evidence of glutathione depletion or the induction of superoxide dismutase (SOD) activity in any treatment. Histology showed a mild hypoplasia of mucous cells in the epidermis with some nanomaterials. In the aged soil, the CuO-NH4+ was the most acutely toxic ENM (survival 45 ±â€¯3%) and Cu accumulation was lower in the earthworms than in the fresh soil study. Depletion of tissue Mn and Zn concentrations were seen in earthworms in aged soil, while no significant effects on sodium pump or total glutathione were observed. Overall, the study showed some coating-dependent differences in ENM toxicity to earthworms which also changed after a year of ageing the soil.


Subject(s)
Copper/toxicity , Nanoparticles/toxicity , Oligochaeta/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Animals , Copper/analysis , Glutathione , Manganese/metabolism , Nanoparticles/chemistry , Oligochaeta/metabolism , Osmosis/drug effects , Oxidative Stress/drug effects , Soil Pollutants/analysis , Zinc/metabolism
7.
Ecotoxicology ; 26(3): 370-382, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28168557

ABSTRACT

The Organisation for Economic Cooperation and Development (OECD) provides several standard test methods for the environmental hazard assessment of chemicals, mainly based on primary producers, arthropods, and fish. In April 2016, two new test guidelines with two mollusc species representing different reproductive strategies were approved by OECD member countries. One test guideline describes a 28-day reproduction test with the parthenogenetic New Zealand mudsnail Potamopyrgus antipodarum. The main endpoint of the test is reproduction, reflected by the embryo number in the brood pouch per female. The development of a new OECD test guideline involves several phases including inter-laboratory validation studies to demonstrate the robustness of the proposed test design and the reproducibility of the test results. Therefore, a ring test of the reproduction test with P. antipodarum was conducted including eight laboratories with the test substances trenbolone and prochloraz and results are presented here. Most laboratories could meet test validity criteria, thus demonstrating the robustness of the proposed test protocol. Trenbolone did not have an effect on the reproduction of the snails at the tested concentration range (nominal: 10-1000 ng/L). For prochloraz, laboratories produced similar EC10 and NOEC values, showing the inter-laboratory reproducibility of results. The average EC10 and NOEC values for reproduction (with coefficient of variation) were 26.2 µg/L (61.7%) and 29.7 µg/L (32.9%), respectively. This ring test shows that the mudsnail reproduction test is a well-suited tool for use in the chronic aquatic hazard and risk assessment of chemicals.


Subject(s)
Environmental Monitoring/methods , Guidelines as Topic , Imidazoles/toxicity , Organisation for Economic Co-Operation and Development , Snails/physiology , Toxicity Tests/statistics & numerical data , Trenbolone Acetate/toxicity , Water Pollutants, Chemical/toxicity , Anabolic Agents , Animals , Endocrine Disruptors , Environmental Monitoring/standards , Female , Fungicides, Industrial/toxicity , New Zealand , Reproducibility of Results , Reproduction/drug effects , Risk Assessment/methods , Risk Assessment/standards
8.
Regul Toxicol Pharmacol ; 76: 231-3, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873775

ABSTRACT

Fish toxicity testing has been conducted since the 1860's in order to help define safe levels of chemical contaminants in lakes, rivers and coastal waters. The historical emphasis on acute lethality testing of chemicals has more recently focussed on long term sublethal effects of chemicals on fish and their prey species. Fish toxicity testing is now embedded in much environment legislation on chemical safety while it is recognized that animal use should be Replaced, Reduced and Refined (the 3Rs) where possible. The OECD Fish Toxicity Testing Framework provides a useful structure with which to address the needs of environmental safety assessment whilst implementing the 3Rs. This commentary aims to promote the implementation of the recommendations of the OECD Fish Toxicity Testing Framework.


Subject(s)
Animal Testing Alternatives , Environmental Monitoring/methods , Fishes , Organisation for Economic Co-Operation and Development , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animal Testing Alternatives/standards , Animals , Environmental Monitoring/standards , Humans , Organisation for Economic Co-Operation and Development/standards , Policy Making , Risk Assessment , Time Factors , Toxicity Tests/standards
9.
Regul Toxicol Pharmacol ; 81: 47-56, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27461040

ABSTRACT

This paper presents the results from two ring-tests addressing the feasibility, robustness and reproducibility of a reproduction toxicity test with the freshwater gastropod Lymnaea stagnalis (RENILYS strain). Sixteen laboratories (from inexperienced to expert laboratories in mollusc testing) from nine countries participated in these ring-tests. Survival and reproduction were evaluated in L. stagnalis exposed to cadmium, tributyltin, prochloraz and trenbolone according to an OECD draft Test Guideline. In total, 49 datasets were analysed to assess the practicability of the proposed experimental protocol, and to estimate the between-laboratory reproducibility of toxicity endpoint values. The statistical analysis of count data (number of clutches or eggs per individual-day) leading to ECx estimation was specifically developed and automated through a free web-interface. Based on a complementary statistical analysis, the optimal test duration was established and the most sensitive and cost-effective reproduction toxicity endpoint was identified, to be used as the core endpoint. This validation process and the resulting optimized protocol were used to consolidate the OECD Test Guideline for the evaluation of reproductive effects of chemicals in L. stagnalis.


Subject(s)
Lymnaea/drug effects , Research Design , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Cadmium Chloride/toxicity , Clutch Size/drug effects , Dose-Response Relationship, Drug , Feasibility Studies , Guideline Adherence , Guidelines as Topic , Imidazoles/toxicity , Models, Statistical , Ovum/drug effects , Regression Analysis , Reproducibility of Results , Reproduction/drug effects , Research Design/standards , Risk Assessment , Time Factors , Toxicity Tests/standards , Trenbolone Acetate/toxicity , Trialkyltin Compounds/toxicity
11.
J Appl Toxicol ; 35(9): 971-5, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25943792

ABSTRACT

Adverse Outcome Pathways (AOPs) provide an opportunity to develop new and more accurate safety assessment processes for drugs and other chemicals, and may ultimately play an important role in regulatory decision making. Not only can the development and application of AOPs pave the way for the development of improved evidence-based approaches for hazard and risk assessment, there is also the promise of a significant impact on animal welfare, with a reduced reliance on animal-based methods. The establishment of a useable and coherent knowledge framework under which AOPs will be developed and applied has been a first critical step towards realizing this opportunity. This article explores how the development of AOPs under this framework, and their application in practice, could benefit the science and practice of safety assessment, while in parallel stimulating a move away from traditional methods towards an increased acceptance of non-animal approaches. We discuss here the key areas where current, and future initiatives should be focused to enable the translation of AOPs into routine chemical safety assessment, and lasting 3Rs benefits.


Subject(s)
Animal Testing Alternatives/methods , Models, Biological , Risk Assessment/methods , Toxicity Tests/methods , Animal Testing Alternatives/standards , Animal Testing Alternatives/trends , Computer Simulation , Decision Making , Risk Assessment/standards , Toxicity Tests/standards , Toxicity Tests/trends
12.
Biol Lett ; 9(4): 20130492, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23804293

ABSTRACT

The use of human and veterinary pharmaceuticals is increasing. Over the past decade, there has been a proliferation of research into potential environmental impacts of pharmaceuticals in the environment. A Royal Society-supported seminar brought together experts from diverse scientific fields to discuss the risks posed by pharmaceuticals to wildlife. Recent analytical advances have revealed that pharmaceuticals are entering habitats via water, sewage, manure and animal carcases, and dispersing through food chains. Pharmaceuticals are designed to alter physiology at low doses and so can be particularly potent contaminants. The near extinction of Asian vultures following exposure to diclofenac is the key example where exposure to a pharmaceutical caused a population-level impact on non-target wildlife. However, more subtle changes to behaviour and physiology are rarely studied and poorly understood. Grand challenges for the future include developing more realistic exposure assessments for wildlife, assessing the impacts of mixtures of pharmaceuticals in combination with other environmental stressors and estimating the risks from pharmaceutical manufacturing and usage in developing countries. We concluded that an integration of diverse approaches is required to predict 'unexpected' risks; specifically, ecologically relevant, often long-term and non-lethal, consequences of pharmaceuticals in the environment for wildlife and ecosystems.


Subject(s)
Environmental Exposure , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Pharmaceutical Preparations/metabolism , Vertebrates/metabolism , Animals , Animals, Wild/metabolism , Conservation of Natural Resources , Environmental Monitoring , Food Chain , Humans
13.
Sci Total Environ ; 893: 164606, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37271380

ABSTRACT

Fundamental to all life, phosphorus is an essential nutrient and, contrastingly, a significant threat to surface water biodiversity globally as one of the most common causes of eutrophication in surface waters worldwide. Freshwater wetland ditches affected by these conditions undergo a conversion from primarily submerged aquatic vegetation to algae or duckweed dominance, leading to anoxic conditions. However, macrophyte biomass harvesting in eutrophic water systems is a promising means of remediation and nutrient recycling. This study seasonally assesses spatial distribution and chemical fractionation of surface water phosphorus, as well as surface biomass abundance and total phosphorus content in the ditch systems at West Sedgemoor (Somerset, UK), a designated site of special scientific interest. Elevated phosphorus concentrations in the surface water were observed across the site, with all sites exceeding e hi the Common Standards Monitoring environmental quality standard value of 0.1 mg L-1 during summer and autumn Sites lacking hydrological flow connectivity with contaminated freshwater inputs, typically had lower surface water phosphorus concentrations than the rest of the moor, with localised hotspots associated with likely cattle related agricultural activity. Summer and autumn were determined as the dominant duckweed growth seasons, in which an estimated 39 kg of phosphorus could be removed via duckweed biomass harvesting, per harvest period.


Subject(s)
Phosphorus , Wetlands , Animals , Cattle , Phosphorus/analysis , Hydrology , Eutrophication , Water , Plants , United Kingdom , Nitrogen/analysis , Environmental Monitoring
14.
Environ Toxicol Chem ; 42(4): 757-777, 2023 04.
Article in English | MEDLINE | ID: mdl-36789969

ABSTRACT

Multiple in vivo test guidelines focusing on the estrogen, androgen, thyroid, and steroidogenesis pathways have been developed and validated for mammals, amphibians, or fish. However, these tests are resource-intensive and often use a large number of laboratory animals. Developing alternatives for in vivo tests is consistent with the replacement, reduction, and refinement principles for animal welfare considerations, which are supported by increasing mandates to move toward an "animal-free" testing paradigm worldwide. New approach methodologies (NAMs) hold great promise to identify molecular, cellular, and tissue changes that can be used to predict effects reliably and more efficiently at the individual level (and potentially on populations) while reducing the number of animals used in (eco)toxicological testing for endocrine disruption. In a collaborative effort, experts from government, academia, and industry met in 2020 to discuss the current challenges of testing for endocrine activity assessment for fish and amphibians. Continuing this cross-sector initiative, our review focuses on the current state of the science regarding the use of NAMs to identify chemical-induced endocrine effects. The present study highlights the challenges of using NAMs for safety assessment and what work is needed to reduce their uncertainties and increase their acceptance in regulatory processes. We have reviewed the current NAMs available for endocrine activity assessment including in silico, in vitro, and eleutheroembryo models. New approach methodologies can be integrated as part of a weight-of-evidence approach for hazard or risk assessment using the adverse outcome pathway framework. The development and utilization of NAMs not only allows for replacement, reduction, and refinement of animal testing but can also provide robust and fit-for-purpose methods to identify chemicals acting via endocrine mechanisms. Environ Toxicol Chem 2023;42:757-777. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Endocrine Disruptors , Animals , Endocrine Disruptors/toxicity , Endocrine Disruptors/analysis , Fishes , Ecotoxicology , Amphibians , Endocrine System , Risk Assessment , Mammals
15.
Xenobiotica ; 42(11): 1069-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22594345

ABSTRACT

The application of zebrafish (Danio rerio) larvae to drug discovery assays and toxicity testing, and the occurrence of pharmaceuticals in the environment, has resulted in a need to understand the extent of the metabolic capabilities in the early life stages of this species. The aims of this study were to determine if zebrafish larvae absorbed, metabolized and excreted the model pharmaceutical, ibuprofen. Zebrafish larvae (72 h post fertilization) were exposed to ibuprofen (100 µg/L), (14)C-ibuprofen (100 µg/L) or a solvent control (ethanol) for ≤ 24 h. Water samples and larval extracts were assessed for metabolites of ibuprofen using liquid chromatography mass spectrometry (LC-MS-MS). Fractions from the separation of the samples treated with (14)C-ibuprofen were collected after chromatography and analysed for (14)C content by scintillation counting. Assessment of larval extracts and water samples by LC-MS-MS at 24 h resulted in the identification of hydroxy-ibuprofen in both water samples and larval extracts (8.2 and 0.08% of the total detected (14)C, respectively). A second putative hydroxy-ibuprofen moiety was also observed in water samples at trace levels, and a third minor unknown metabolite was detected in larval extracts only by scintillation counting (0.02% of the total (14)C detected). This study provides evidence that zebrafish larvae can metabolize and excrete ibuprofen in a manner known to be cytochrome P450-dependent in mammals, and the similarity to the mammalian pathway supports the use of this system as a surrogate in toxicity and efficacy screening.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/metabolism , Ibuprofen/metabolism , Zebrafish/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Chromatography, Liquid , Ibuprofen/pharmacokinetics , Larva/metabolism , Mass Spectrometry , Scintillation Counting
16.
Environ Toxicol ; 27(10): 573-82, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21384489

ABSTRACT

The conservation of common physiological systems across vertebrate classes suggests the potential for certain pharmaceuticals, which have been detected in surface waters, to produce biological effects in nontarget vertebrates such as fish. However, previous studies assessing the effects of such compounds in fish have not taken into account the potential for metabolism and elimination. This study aimed to assess if propranolol, a ß-adrenergic receptor antagonist or ß-blocker, could modulate EROD activity (indicative of CYP1A activity) in rainbow trout (Oncorhynchus mykiss) gills and liver. For this, an in vivo time course exposure with 1 mg/L was conducted. Additionally, using measured in vivo plasma concentrations, an in vitro exposure at human therapeutic levels was undertaken. This allowed comparison of in vitro and in vivo rates of EROD activity, thus investigating the applicability of cell preparations as surrogates for whole animal enzyme activity analysis. In vitro exposure of suspended liver and gill cells at concentrations similar to in vivo levels resulted in EROD activity in both tissues, but with significantly higher rates (up to six times in vivo levels). These results show that propranolol exposure elevated EROD activity in the liver and gill of rainbow trout, and that this is demonstrable both in vivo (albeit nonsignificantly in the liver) and in vitro, thus supporting the use of the latter as a surrogate of the former. These data also provide an insight into the potential role of the gill as a site of metabolism of pharmaceuticals in trout, suggesting that propranolol (and feasibly other pharmaceuticals) may undergo "first pass" metabolism in this organ.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Gills/enzymology , Liver/enzymology , Oncorhynchus mykiss/metabolism , Propranolol/pharmacology , Adrenergic beta-Antagonists/pharmacology , Animals , Cells, Cultured , Cytochrome P-450 CYP1A1/drug effects , Female , Gills/cytology , Gills/drug effects , Hepatocytes/drug effects , Hepatocytes/enzymology , Liver/drug effects , Propranolol/blood
17.
Mar Pollut Bull ; 181: 113909, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35810649

ABSTRACT

The agrochemicals and nutrient losses from farming areas such as paddy farming significantly dictate quality and eutrophication of the freshwater resource. However, how farming and land use pattern affect water qualities and eutrophication remain poorly understood in most African agro-ecosystems. The present study characterized how paddy farming influences water qualities and eutrophication in 10 irrigation schemes in Usangu agro-ecosystem (UA). About 42 water samples were sampled from intakes, channels, paddy fields, and drainages and analyzed for EC, Cl, P, NH4-N, NO3-N, TN, Zn, Cu, Ca, and Mg. We observed water pH ranging from 4.89 to 6.76, which was generally below the acceptable range (6.5-8.4) for irrigation water. NH4-N concentration was in a range of 10.6-70.0 mg/L, NO3-N (8.4-33.9 mg/L), and TN (19.1-21,104 mg/L). NH4-N increased along sampling transect (sampling points) from intakes (5.7-29.1 mg/L), channels (19-20 mg/L), fields (12.9-35.8 mg/L), and outflow (10.6-70.0 mg/L), the same trend were found for NO3-N and TN. The TP determined in water samples were in the range of 0.01 to 1.65 mg/L; where some sites had P > 0.1 mg/L exceeding the allowable P concentration in freshwater resource, thus indicating P enrichment and eutrophication status. The P concentration was observed to increase from intake through paddy fields to drainages, where high P was determined in drainages (0.02-1.65 mg/L) and fields (0.0-0.54 mg/L) compared to channels (0.01-0.13 mg/L) and intakes (0.01-0.04 mg/L). Furthermore, we determined appreciable amount of potentially toxic elements (PTEs) such as Cu, Pb, Cd and Cr in studied water samples. The high N, P, and PTEs in drainages indicate enrichment from agricultural fields leading to water quality degradation and contaminations (eutrophication). The study demonstrates that water quality in UA is degrading potentially due to paddy rice farming and other associated activities in the landscape. Thus, the current study recommends starting initiatives to monitor irrigation water quality in UA for better crop productivity, and improved quality of drainage re-entering downstream through the introduction of mandatory riparian buffer, revising irrigation practices, to include good agronomic practices (GAP) to ensure water quality and sustainability.


Subject(s)
Ecosystem , Water Quality , Agriculture , Eutrophication , Nitrogen/analysis , Phosphorus/analysis , Tanzania
18.
Integr Environ Assess Manag ; 18(2): 442-458, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34292658

ABSTRACT

Many regulations are beginning to explicitly require investigation of a chemical's endocrine-disrupting properties as a part of the safety assessment process for substances already on or about to be placed on the market. Different jurisdictions are applying distinct approaches. However, all share a common theme requiring testing for endocrine activity and adverse effects, typically involving in vitro and in vivo assays on selected endocrine pathways. For ecotoxicological evaluation, in vivo assays can be performed across various animal species, including mammals, amphibians, and fish. Results indicating activity (i.e., that a test substance may interact with the endocrine system) from in vivo screens usually trigger further higher-tier in vivo assays. Higher-tier assays provide data on adverse effects on relevant endpoints over more extensive parts of the organism's life cycle. Both in vivo screening and higher-tier assays are animal- and resource-intensive and can be technically challenging to conduct. Testing large numbers of chemicals will inevitably result in the use of large numbers of animals, contradicting stipulations set out within many regulatory frameworks that animal studies be conducted as a last resort. Improved strategies are urgently required. In February 2020, the UK's National Centre for the 3Rs and the Health and Environmental Sciences Institute hosted a workshop ("Investigating Endocrine Disrupting Properties in Fish and Amphibians: Opportunities to Apply the 3Rs"). Over 50 delegates attended from North America and Europe, across academia, laboratories, and consultancies, regulatory agencies, and industry. Challenges and opportunities in applying refinement and reduction approaches within the current animal test guidelines were discussed, and utilization of replacement and/or new approach methodologies, including in silico, in vitro, and embryo models, was explored. Efforts and activities needed to enable application of 3Rs approaches in practice were also identified. This article provides an overview of the workshop discussions and sets priority areas for follow-up. Integr Environ Assess Manag 2022;18:442-458. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Endocrine Disruptors , Amphibians , Animals , Ecotoxicology , Endocrine Disruptors/analysis , Endocrine System/chemistry , Risk Assessment/methods
19.
Gen Comp Endocrinol ; 173(3): 483-90, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21827763

ABSTRACT

Complimentary DNAs for three beta-adrenergic receptors (ßARs) were isolated and characterised in the fathead minnow. The encoded proteins of 402 (ß(1)AR), 397 (ß(2)AR) and 434 (ß(3)AR) amino acids were homologous to other vertebrate ßARs, and displayed the characteristic seven transmembrane helices of G Protein-coupled receptors. Motifs and amino acids shown to be important for ligand binding were conserved in the fathead minnow receptors. Quantitative RT-PCR revealed the expression of all receptors to be highest in the heart and lowest in the ovary. However, the ß(1)AR was the predominant subtype in the heart (70%), and ß(3)AR the predominant subtype in the ovary (53%). In the brain, ß(1)AR expression was about 200-fold higher than that of ß(2)- and ß(3)AR, whereas in the liver, ß(2)AR expression was about 20-fold and 100-fold higher than ß(3)- and ß(1)AR expression, respectively. Receptor gene expression was modulated by exposure to propranolol (0.001-1mg/L) for 21 days, but not in a consistent, concentration-related manner. These results show that the fathead minnow has a beta-adrenergic receptor repertoire similar to that of mammals, with the molecular signatures required for ligand binding. An exogenous ligand, the beta-blocker propranolol, is able to alter the expression profile of these receptors, although the functional relevance of such changes remains to be determined. Characterisation of the molecular targets for beta-blockers in fish will aid informed environmental risk assessments of these drugs, which are known to be present in the aquatic environment.


Subject(s)
Cyprinidae/metabolism , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-3/metabolism , Amino Acid Motifs , Animals , Binding Sites , DNA, Complementary/chemistry , Female , Phylogeny , Protein Structure, Tertiary , RNA, Messenger/metabolism , Receptors, Adrenergic, beta-1/chemistry , Receptors, Adrenergic, beta-1/physiology , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/physiology , Receptors, Adrenergic, beta-3/chemistry , Receptors, Adrenergic, beta-3/physiology , Sequence Alignment , Sequence Analysis, Protein
20.
Sci Total Environ ; 765: 142749, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33069471

ABSTRACT

Eutrophication is a significant threat to surface water biodiversity worldwide, with excessive phosphorus concentrations being among the most common causes. Wetland ditches under these conditions shift from primarily submerged aquatic vegetation to algae or duckweed dominance, leading to excessive shading and anoxic conditions. Phosphorus, from both point (e.g. wastewater treatment works) and diffuse (largely agricultural runoff) sources, is currently the central reason for failure in the majority of surface water bodies in England to meet required water quality guidelines. This study assesses phosphorus storage in the ditch systems at West Sedgemoor, a designated site of special scientific interest. Elevated phosphorus concentrations in sediment was observed across the Moor up to 4220 mg Kg-1, almost 10 times that which may be expected from background levels. The highest concentrations were generally observed at the more intensively farmed sites in the north of the moor, near key inlets and the outlet. Based upon their chemical and physical properties, clear distinction was observed between sites outside and within the Royal Society of the Protection of Birds nature reserve, using principal component analysis.

SELECTION OF CITATIONS
SEARCH DETAIL