Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell ; 184(12): 3333-3348.e19, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34010619

ABSTRACT

Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.


Subject(s)
Arabidopsis/genetics , Genes, Plant , Inventions , Plant Roots/growth & development , Plant Roots/genetics , Solanum lycopersicum/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Green Fluorescent Proteins/metabolism , Solanum lycopersicum/cytology , Meristem/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/cytology , Promoter Regions, Genetic/genetics , Protein Biosynthesis , Species Specificity , Transcription Factors/metabolism , Xylem/genetics
3.
Plant Physiol ; 190(4): 2350-2365, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35984294

ABSTRACT

With the need to increase plant productivity, one of the challenges plant scientists are facing is to identify genes that play a role in beneficial plant traits. Moreover, even when such genes are found, it is generally not trivial to transfer this knowledge about gene function across species to identify functional orthologs. Here, we focused on the leaf to study plant growth. First, we built leaf growth transcriptional networks in Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and aspen (Populus tremula). Next, known growth regulators, here defined as genes that when mutated or ectopically expressed alter plant growth, together with cross-species conserved networks, were used as guides to predict novel Arabidopsis growth regulators. Using an in-depth literature screening, 34 out of 100 top predicted growth regulators were confirmed to affect leaf phenotype when mutated or overexpressed and thus represent novel potential growth regulators. Globally, these growth regulators were involved in cell cycle, plant defense responses, gibberellin, auxin, and brassinosteroid signaling. Phenotypic characterization of loss-of-function lines confirmed two predicted growth regulators to be involved in leaf growth (NPF6.4 and LATE MERISTEM IDENTITY2). In conclusion, the presented network approach offers an integrative cross-species strategy to identify genes involved in plant growth and development.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Meristem/genetics , Indoleacetic Acids/metabolism , Zea mays/metabolism
4.
Nature ; 533(7602): 200-5, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27088604

ABSTRACT

The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.


Subject(s)
Diploidy , Evolution, Molecular , Gene Duplication/genetics , Genes, Duplicate/genetics , Genome/genetics , Salmo salar/genetics , Animals , DNA Transposable Elements/genetics , Female , Genomics , Male , Models, Genetic , Mutagenesis/genetics , Phylogeny , Reference Standards , Salmo salar/classification , Sequence Homology
5.
Proc Natl Acad Sci U S A ; 115(46): E10970-E10978, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30373829

ABSTRACT

The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).


Subject(s)
Populus/genetics , Biological Evolution , DNA, Plant/genetics , Evolution, Molecular , Genetic Variation , Genetics, Population/methods , Genome, Plant , Genomics , Linkage Disequilibrium/genetics , Phylogeny , Selection, Genetic/genetics , Sequence Analysis, DNA/methods , Trees/genetics
6.
New Phytol ; 228(5): 1559-1572, 2020 12.
Article in English | MEDLINE | ID: mdl-32648607

ABSTRACT

Wood, or secondary xylem, is the product of xylogenesis, a developmental process that begins with the proliferation of cambial derivatives and ends with mature xylem fibers and vessels with lignified secondary cell walls. Fully mature xylem has undergone a series of cellular processes, including cell division, cell expansion, secondary wall formation, lignification and programmed cell death. A complex network of interactions between transcriptional regulators and signal transduction pathways controls wood formation. However, the role of metabolites during this developmental process has not been comprehensively characterized. To evaluate the role of metabolites during wood formation, we performed a high spatial resolution metabolomics study of the wood-forming zone of Populus tremula, including laser dissected aspen ray and fiber cells. We show that metabolites show specific patterns within the wood-forming zone, following the differentiation process from cell division to cell death. The data from profiled laser dissected aspen ray and fiber cells suggests that these two cell types host distinctly different metabolic processes. Furthermore, by integrating previously published transcriptomic and proteomic profiles generated from the same trees, we provide an integrative picture of molecular processes, for example, deamination of phenylalanine during lignification is of critical importance for nitrogen metabolism during wood formation.


Subject(s)
Populus , Proteomics , Wood , Cambium , Gene Expression Regulation, Plant , Populus/genetics , Xylem
7.
Plant Physiol ; 180(1): 404-419, 2019 05.
Article in English | MEDLINE | ID: mdl-30850470

ABSTRACT

The grass subfamily Pooideae dominates the grass floras in cold temperate regions and has evolved complex physiological adaptations to cope with extreme environmental conditions like frost, winter, and seasonality. One such adaptation is cold acclimation, wherein plants increase their frost tolerance in response to gradually falling temperatures and shorter days in the autumn. However, understanding how complex traits like cold acclimation evolve remains a major challenge in evolutionary biology. Here, we investigated the evolution of cold acclimation in Pooideae and found that a phylogenetically diverse set of Pooideae species displayed cold acclimation capacity. However, comparing differential gene expression after cold treatment in transcriptomes of five phylogenetically diverse species revealed widespread species-specific responses of genes with conserved sequences. Furthermore, we studied the correlation between gene family size and number of cold-responsive genes as well as between selection pressure on coding sequences of genes and their cold responsiveness. We saw evidence of protein-coding and regulatory sequence evolution as well as the origin of novel genes and functions contributing toward evolution of a cold response in Pooideae. Our results reflect that selection pressure resulting from global cooling must have acted on already diverged lineages. Nevertheless, conservation of cold-induced gene expression of certain genes indicates that the Pooideae ancestor may have possessed some molecular machinery to mitigate cold stress. Evolution of adaptations to seasonally cold climates is regarded as particularly difficult. How Pooideae evolved to transition from tropical to temperate biomes sheds light on how complex traits evolve in the light of climate changes.


Subject(s)
Cold-Shock Response/genetics , Plant Proteins/genetics , Poaceae/physiology , Acclimatization , Biological Evolution , Climate , Cold Temperature , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Selection, Genetic , Species Specificity , Transcriptome
8.
Plant Cell ; 29(7): 1585-1604, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28655750

ABSTRACT

Trees represent the largest terrestrial carbon sink and a renewable source of ligno-cellulose. There is significant scope for yield and quality improvement in these largely undomesticated species, and efforts to engineer elite varieties will benefit from improved understanding of the transcriptional network underlying cambial growth and wood formation. We generated high-spatial-resolution RNA sequencing data spanning the secondary phloem, vascular cambium, and wood-forming tissues of Populus tremula The transcriptome comprised 28,294 expressed, annotated genes, 78 novel protein-coding genes, and 567 putative long intergenic noncoding RNAs. Most paralogs originating from the Salicaceae whole-genome duplication had diverged expression, with the exception of those highly expressed during secondary cell wall deposition. Coexpression network analyses revealed that regulation of the transcriptome underlying cambial growth and wood formation comprises numerous modules forming a continuum of active processes across the tissues. A comparative analysis revealed that a majority of these modules are conserved in Picea abies The high spatial resolution of our data enabled identification of novel roles for characterized genes involved in xylan and cellulose biosynthesis, regulators of xylem vessel and fiber differentiation and lignification. An associated web resource (AspWood, http://aspwood.popgenie.org) provides interactive tools for exploring the expression profiles and coexpression network.


Subject(s)
Populus/genetics , Transcriptome , Wood/growth & development , Wood/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Internet , Meristem/genetics , Polysaccharides/genetics , Polysaccharides/metabolism , Populus/cytology , Populus/growth & development , Wood/cytology , Xylem/genetics
9.
PLoS Genet ; 13(4): e1006402, 2017 04.
Article in English | MEDLINE | ID: mdl-28406900

ABSTRACT

While several studies have investigated general properties of the genetic architecture of natural variation in gene expression, few of these have considered natural, outbreeding populations. In parallel, systems biology has established that a general feature of biological networks is that they are scale-free, rendering them buffered against random mutations. To date, few studies have attempted to examine the relationship between the selective processes acting to maintain natural variation of gene expression and the associated co-expression network structure. Here we utilised RNA-Sequencing to assay gene expression in winter buds undergoing bud flush in a natural population of Populus tremula, an outbreeding forest tree species. We performed expression Quantitative Trait Locus (eQTL) mapping and identified 164,290 significant eQTLs associating 6,241 unique genes (eGenes) with 147,419 unique SNPs (eSNPs). We found approximately four times as many local as distant eQTLs, with local eQTLs having significantly higher effect sizes. eQTLs were primarily located in regulatory regions of genes (UTRs or flanking regions), regardless of whether they were local or distant. We used the gene expression data to infer a co-expression network and investigated the relationship between network topology, the genetic architecture of gene expression and signatures of selection. Within the co-expression network, eGenes were underrepresented in network module cores (hubs) and overrepresented in the periphery of the network, with a negative correlation between eQTL effect size and network connectivity. We additionally found that module core genes have experienced stronger selective constraint on coding and non-coding sequence, with connectivity associated with signatures of selection. Our integrated genetics and genomics results suggest that purifying selection is the primary mechanism underlying the genetic architecture of natural variation in gene expression assayed in flushing leaf buds of P. tremula and that connectivity within the co-expression network is linked to the strength of purifying selection.


Subject(s)
Gene Regulatory Networks/genetics , Quantitative Trait Loci/genetics , Selection, Genetic/genetics , Systems Biology , Chromosome Mapping , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Phenotype , Polymorphism, Single Nucleotide
10.
BMC Genomics ; 20(1): 694, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31477007

ABSTRACT

BACKGROUND: Recently developed genome resources in Salmonid fish provides tools for studying the genomics underlying a wide range of properties including life history trait variation in the wild, economically important traits in aquaculture and the evolutionary consequences of whole genome duplications. Although genome assemblies now exist for a number of salmonid species, the lack of regulatory annotations are holding back our mechanistic understanding of how genetic variation in non-coding regulatory regions affect gene expression and the downstream phenotypic effects. RESULTS: We present SalMotifDB, a database and associated web and R interface for the analysis of transcription factors (TFs) and their cis-regulatory binding sites in five salmonid genomes. SalMotifDB integrates TF-binding site information for 3072 non-redundant DNA patterns (motifs) assembled from a large number of metazoan motif databases. Through motif matching and TF prediction, we have used these multi-species databases to construct putative regulatory networks in salmonid species. The utility of SalMotifDB is demonstrated by showing that key lipid metabolism regulators are predicted to regulate a set of genes affected by different lipid and fatty acid content in the feed, and by showing that our motif database explains a significant proportion of gene expression divergence in gene duplicates originating from the salmonid specific whole genome duplication. CONCLUSIONS: SalMotifDB is an effective tool for analyzing transcription factors, their binding sites and the resulting gene regulatory networks in salmonid species, and will be an important tool for gaining a better mechanistic understanding of gene regulation and the associated phenotypes in salmonids. SalMotifDB is available at https://salmobase.org/apps/SalMotifDB .


Subject(s)
Databases, Genetic , Genomics/methods , Salmonidae/genetics , Transcription Factors/metabolism , Animals , DNA/chemistry , Gene Duplication/genetics , Gene Regulatory Networks , Lipid Metabolism/genetics , Nucleotide Motifs , Protein Binding
11.
Nature ; 497(7451): 579-84, 2013 May 30.
Article in English | MEDLINE | ID: mdl-23698360

ABSTRACT

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Picea/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Gene Silencing , Genes, Plant/genetics , Genomics , Internet , Introns/genetics , Phenotype , RNA, Untranslated/genetics , Sequence Analysis, DNA , Terminal Repeat Sequences/genetics , Transcription, Genetic/genetics
12.
BMC Genomics ; 19(1): 11, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29298676

ABSTRACT

BACKGROUND: Secretory Carrier-Associated Membrane Proteins (SCAMPs) are highly conserved 32-38 kDa proteins that are involved in membrane trafficking. A systems approach was taken to elucidate function of SCAMPs in wood formation of Populus trees. Phenotypic and multi-omics analyses were performed in woody tissues of transgenic Populus trees carrying an RNAi construct for Populus tremula x tremuloides SCAMP3 (PttSCAMP3; Potri.019G104000). RESULTS: The woody tissues of the transgenic trees displayed increased amounts of both polysaccharides and lignin oligomers, indicating increased deposition of both the carbohydrate and lignin components of the secondary cell walls. This coincided with a tendency towards increased wood density as well as significantly increased thickness of the suberized cork in the transgenic lines. Multivariate OnPLS (orthogonal projections to latent structures) modeling of five different omics datasets (the transcriptome, proteome, GC-MS metabolome, LC-MS metabolome and pyrolysis-GC/MS metabolome) collected from the secondary xylem tissues of the stem revealed systemic variation in the different variables in the transgenic lines, including changes that correlated with the changes in the secondary cell wall composition. The OnPLS model also identified a rather large number of proteins that were more abundant in the transgenic lines than in the wild type. Several of these were related to secretion and/or endocytosis as well as both primary and secondary cell wall biosynthesis. CONCLUSIONS: Populus SCAMP proteins were shown to influence accumulation of secondary cell wall components, including polysaccharides and phenolic compounds, in the woody tissues of Populus tree stems. Our multi-omics analyses combined with the OnPLS modelling suggest that this function is mediated by changes in membrane trafficking to fine-tune the abundance of cell wall precursors and/or proteins involved in cell wall biosynthesis and transport. The data provides a multi-level source of information for future studies on the function of the SCAMP proteins in plant stem tissues.


Subject(s)
Membrane Proteins/physiology , Plant Proteins/physiology , Populus/genetics , Populus/metabolism , Wood/metabolism , Biosynthetic Pathways/genetics , Cell Wall/metabolism , Gene Expression Profiling , Membrane Proteins/genetics , Membrane Proteins/metabolism , Metabolome , Metabolomics , Monosaccharides/metabolism , Multigene Family , Phenols/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Trees , Wood/genetics , Xylem/metabolism
13.
New Phytol ; 218(3): 999-1014, 2018 05.
Article in English | MEDLINE | ID: mdl-29528503

ABSTRACT

The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremula × tremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.


Subject(s)
Ethylenes/metabolism , Hybridization, Genetic , Populus/metabolism , Signal Transduction , Wood/metabolism , Amino Acids, Cyclic/pharmacology , Cell Wall/drug effects , Cell Wall/metabolism , Cell Wall/ultrastructure , Cellulose/metabolism , Computer Simulation , Genes, Plant , Populus/genetics , Populus/ultrastructure , Principal Component Analysis , Promoter Regions, Genetic/genetics , Spectroscopy, Fourier Transform Infrared , Water/pharmacology , Wood/drug effects , Wood/growth & development , Wood/ultrastructure , Xylem/drug effects , Xylem/metabolism , Xylem/ultrastructure
14.
Mol Ecol ; 27(5): 1200-1213, 2018 03.
Article in English | MEDLINE | ID: mdl-29431879

ABSTRACT

Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration.


Subject(s)
Lipid Metabolism , Salmo salar/metabolism , Acclimatization , Animal Migration , Animals , Diet , Gene Duplication , Gene Expression Regulation, Developmental , Life Cycle Stages/genetics , Liver/metabolism , Molecular Sequence Annotation , Salmo salar/genetics , Salmo salar/growth & development , Transcriptome
15.
New Phytol ; 216(2): 482-494, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28186632

ABSTRACT

The secondary xylem of conifers is composed mainly of tracheids that differ anatomically and chemically from angiosperm xylem cells. There is currently no high-spatial-resolution data available profiling gene expression during wood formation for any coniferous species, which limits insight into tracheid development. RNA-sequencing data from replicated, high-spatial-resolution section series throughout the cambial and woody tissues of Picea abies were used to generate the NorWood.conGenIE.org web resource, which facilitates exploration of the associated gene expression profiles and co-expression networks. Integration within PlantGenIE.org enabled a comparative regulomics analysis, revealing divergent co-expression networks between P. abies and the two angiosperm species Arabidopsis thaliana and Populus tremula for the secondary cell wall (SCW) master regulator NAC Class IIB transcription factors. The SCW cellulose synthase genes (CesAs) were located in the neighbourhoods of the NAC factors in A. thaliana and P. tremula, but not in P. abies. The NorWood co-expression network enabled identification of potential SCW CesA regulators in P. abies. The NorWood web resource represents a powerful community tool for generating evo-devo insights into the divergence of wood formation between angiosperms and gymnosperms and for advancing understanding of the regulation of wood development in P. abies.


Subject(s)
Biological Evolution , Gene Expression Regulation, Plant , Picea/growth & development , Picea/genetics , Software , Wood/growth & development , Wood/genetics , Cell Wall/genetics , Cluster Analysis , Gene Regulatory Networks , Genes, Plant , Internet , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism
16.
BMC Genomics ; 17: 119, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887814

ABSTRACT

BACKGROUND: Wood development is of outstanding interest both to basic research and industry due to the associated cellulose and lignin biomass production. Efforts to elucidate wood formation (which is essential for numerous aspects of both pure and applied plant science) have been made using transcriptomic analyses and/or low-resolution sampling. However, transcriptomic data do not correlate perfectly with levels of expressed proteins due to effects of post-translational modifications and variations in turnover rates. In addition, high-resolution analysis is needed to characterize key transitions. In order to identify protein profiles across the developmental region of wood formation, an in-depth and tissue specific sampling was performed. RESULTS: We examined protein profiles, using an ultra-performance liquid chromatography/quadrupole time of flight mass spectrometry system, in high-resolution tangential sections spanning all wood development zones in Populus tremula from undifferentiated cambium to mature phloem and xylem, including cell expansion and cell death zones. In total, we analyzed 482 sections, 20-160 µm thick, from four 47-year-old trees growing wild in Sweden. We obtained high quality expression profiles for 3,082 proteins exhibiting consistency across the replicates, considering that the trees were growing in an uncontrolled environment. A combination of Principal Component Analysis (PCA), Orthogonal Projections to Latent Structures (OPLS) modeling and an enhanced stepwise linear modeling approach identified several major transitions in global protein expression profiles, pinpointing (for example) locations of the cambial division leading to phloem and xylem cells, and secondary cell wall formation zones. We also identified key proteins and associated pathways underlying these developmental landmarks. For example, many of the lignocellulosic related proteins were upregulated in the expansion to the early developmental xylem zone, and for laccases with a rapid decrease in early xylem zones. We observed upregulation of two forms of xylem cysteine protease (Potri.002G005700.1 and Potri.005G256000.2; Pt-XCP2.1) in early xylem and their downregulation in late maturing xylem. Our data also show that Pt-KOR1.3 (Potri.003G151700.2) exhibits an expression pattern that supports the hypothesis put forward in previous studies that this is a key xyloglucanase involved in cellulose biosynthesis in primary cell walls and reduction of cellulose crystallinity in secondary walls. CONCLUSION: Our novel multivariate approach highlights important processes and provides confirmatory insights into the molecular foundations of wood development.


Subject(s)
Plant Proteins/metabolism , Populus/growth & development , Proteome/metabolism , Wood/growth & development , Cambium , Cellulose/biosynthesis , Chromatography, Liquid , Mass Spectrometry , Models, Biological , Phloem/growth & development , Proteomics , Sweden , Xylem/growth & development
17.
Biol Proced Online ; 18: 11, 2016.
Article in English | MEDLINE | ID: mdl-27168732

ABSTRACT

BACKGROUND: The number of species with completed genomes, including those with evidence for recent whole genome duplication events has exploded. The recently sequenced Atlantic salmon genome has been through two rounds of whole genome duplication since the divergence of teleost fish from the lineage that led to amniotes. This quadrupoling of the number of potential genes has led to complex patterns of retention and loss among gene families. RESULTS: Methods have been developed to characterize the interplay of duplicate gene retention processes across both whole genome duplication events and additional smaller scale duplication events. Further, gene expression divergence data has become available as well for Atlantic salmon and the closely related, pre-whole genome duplication pike and methods to describe expression divergence are also presented. These methods for the characterization of duplicate gene retention and gene expression divergence that have been applied to salmon are described. CONCLUSIONS: With the growth in available genomic and functional data, the opportunities to extract functional inference from large scale duplicates using comparative methods have expanded dramatically. Recently developed methods that further this inference for duplicated genes have been described.

18.
New Phytol ; 212(2): 338-44, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27575589

ABSTRACT

Contents 338 I. 338 II. 339 III. 340 IV. 342 343 References 343 SUMMARY: The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.


Subject(s)
Forests , Genomics , Trees/genetics , Genetics, Population , Genome, Plant
19.
New Phytol ; 208(4): 1149-56, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26192091

ABSTRACT

Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight.


Subject(s)
Arabidopsis/genetics , Databases, Factual , Genes, Plant , Genome, Plant , Populus/genetics , Tracheophyta/genetics , Trees/genetics , Computational Biology , Forests , Gene Expression , Genomics/methods , Internet , Models, Biological , RNA, Plant , Sequence Analysis, DNA
20.
BMC Genomics ; 15: 106, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24498971

ABSTRACT

BACKGROUND: Divergence in gene regulation has emerged as a key mechanism underlying species differentiation. Comparative analysis of co-expression networks across species can reveal conservation and divergence in the regulation of genes. RESULTS: We inferred co-expression networks of A. thaliana, Populus spp. and O. sativa using state-of-the-art methods based on mutual information and context likelihood of relatedness, and conducted a comprehensive comparison of these networks across a range of co-expression thresholds. In addition to quantifying gene-gene link and network neighbourhood conservation, we also applied recent advancements in network analysis to do cross-species comparisons of network properties such as scale free characteristics and gene centrality as well as network motifs. We found that in all species the networks emerged as scale free only above a certain co-expression threshold, and that the high-centrality genes upholding this organization tended to be conserved. Network motifs, in particular the feed-forward loop, were found to be significantly enriched in specific functional subnetworks but where much less conserved across species than gene centrality. Although individual gene-gene co-expression had massively diverged, up to ~80% of the genes still had a significantly conserved network neighbourhood. For genes with multiple predicted orthologs, about half had one ortholog with conserved regulation and another ortholog with diverged or non-conserved regulation. Furthermore, the most sequence similar ortholog was not the one with the most conserved gene regulation in over half of the cases. CONCLUSIONS: We have provided a comprehensive analysis of gene regulation evolution in plants and built a web tool for Comparative analysis of Plant co-Expression networks (ComPlEx, http://complex.plantgenie.org/). The tool can be particularly useful for identifying the ortholog with the most conserved regulation among several sequence-similar alternatives and can thus be of practical importance in e.g. finding candidate genes for perturbation experiments.


Subject(s)
Algorithms , Arabidopsis/genetics , Genes, Plant , Oryza/genetics , Populus/genetics , Base Sequence , Conserved Sequence , Gene Expression Regulation, Plant , Gene Regulatory Networks , Internet , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL