Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Org Biomol Chem ; 20(16): 3263-3267, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35354199

ABSTRACT

A deoxygenative geminal fluorosulfonimidation of 1,2-diketones was achieved for the synthesis of tetrasubstituted α-fluoroamines under mild conditions. In this study, a transition metal-free formal N-F insertion of N-fluorobenzenesulfonimide was enabled via the Kukhtin-Ramirez reaction employing a dealkylation-resistant P(III) reagent developed in our laboratory. Computational analysis was also performed to obtain a general mechanistic picture, which explained the reactivity and selectivity for this type of reaction.


Subject(s)
Ketones , Transition Elements , Catalysis
2.
Org Lett ; 25(49): 8839-8844, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38032312

ABSTRACT

The incorporation of noncarbon heteroatoms into organic molecules typically instills characteristic and often valuable functionalities. The copresence of different heteroatoms can further broaden their utility through the synergistic cooperative effects, which may even lead to the discovery of formerly unavailable properties that are not just a simple accumulation of each function. However, despite increasing interest in the controllable installation of heteroatoms, it has been extremely challenging to construct carbon centers having three different heteroatoms in a synthetically useful manner. In this work, our group's tandem geminal chlorofluorination (Cl, F) strategy was applied to rationally designed heteroatom-bearing 1,2-dicarbonyl substrates, including α-keto thioesters (S), α-keto N-acylindoles (N), and α-keto acylsilane (Si), which resulted in the practical production of doubly or triply heterofunctionalized tetrasubstituted carbon centers with excellent site-selectivity.

3.
Org Lett ; 22(11): 4190-4195, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32383611

ABSTRACT

Tetrasubstituted carbon containing two different halogen substituents was constructed in a single-step operation by utilizing the carbene-like reactivity of dioxaphospholene through the tandem reaction of electrophilic and nucleophilic halogenating reagents. It was crucial to devise non-dealkylatable phosphoramidite, which enabled the efficient formation of geminal chlorofluorides from various 1,2-diketones with (PhSO2)2NF and n-Bu4NCl. In addition, selective functionalization of the chlorine substituent was demonstrated, and the absence of halogen scrambling was confirmed.

4.
Struct Dyn ; 6(6): 064901, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31867409

ABSTRACT

Ultrafast intramolecular proton transfers of 1,2-dihydroxyanthraquinone (alizarin-h2) and its deuterated product (alizarin-d2) in dimethyl sulfoxide (DMSO) have been investigated by femtosecond stimulated Raman spectroscopy. The population dynamics in the solute vibrational mode of νC=O and the coherent oscillations observed in all of the skeletal vibrational modes νC=O and νC=C clearly showed the ultrafast excited-state intramolecular proton transfer dynamics of 110 and 170 fs for alizarin-h2 and alizarin-d2, respectively. Interestingly, we have observed that the solvent vibrational modes νS=O and νCSC may also represent ultrafast structural dynamics at the frequencies for its "free" or "aggregated" species. From the kinetic analysis of the νS=O and νCSC modes of DMSO, the ultrafast changes in the solvation or intermolecular interactions between DMSO molecules initiated by the structural changes of solute molecules have been thoroughly investigated. We propose that the solvent vibrational modes νS=O and νCSC of DMSO can be used as a "sensor" for ultrafast chemical reactions accompanying the structural changes and subsequent solute-solvent interactions.

5.
Front Plant Sci ; 6: 714, 2015.
Article in English | MEDLINE | ID: mdl-26442028

ABSTRACT

Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL.

6.
Int J Pharm ; 285(1-2): 43-9, 2004 Nov 05.
Article in English | MEDLINE | ID: mdl-15488678

ABSTRACT

The primary aim of this study was to investigate the skin permeation-enhancing mechanism of HPE-101 using erythrocyte ghost cells prepared from human whole blood as a biomembrane model. The extent of hemolysis of erythrocytes induced by HPE-101 was measured using a spectrophotometer at 540nm. The effect of HPE-101 on lipid fluidity was examined by observing the change of intramolecular excimer formation and fluorescence polarization using an intramolecular probe (1,3-bis(pyrene) propane) and a lipid probe (1,6-diphenyl 1,3,5-hexatriene), respectively. Hemolysis of erythrocytes was observed at 0.01mM and completed at 1.0mM of HPE-101. The fluorescence polarization of the ghost membrane decreased with the addition of HPE-101, whereas the intramolecular excimer formation increased. HPE-101 thus enhanced the rotational mobility and the lateral diffusion, thereby decreasing the microviscosity of ghost membranes, implying that HPE-101 increases the lipid fluidity of ghost membranes. Therefore, HPE-101 seems to cause an increase in fluidity of the lipid bilayers in the stratum corneum of the skin, resulting in the reduction of diffusion resistance.


Subject(s)
Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Pyrroles/pharmacokinetics , Skin/cytology , Adjuvants, Pharmaceutic/chemistry , Adjuvants, Pharmaceutic/pharmacokinetics , Binding Sites/drug effects , Binding Sites/physiology , Diffusion/drug effects , Diphenylhexatriene , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Fluorescence Polarization/methods , Hemolysis/drug effects , Humans , Korea , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Fluidity/drug effects , Models, Biological , Molecular Probes , Pyrenes/chemistry , Pyrroles/chemistry , Skin/drug effects , Skin/metabolism , Spectrophotometry/methods , Viscosity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL