Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Curr Issues Mol Biol ; 46(3): 2355-2385, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38534766

ABSTRACT

Low-salt diet (LSD) is a constant recommendation to hypertensive patients, but the genomic mechanisms through which it improves cardiac pathophysiology are still not fully understood. Our publicly accessible transcriptomic dataset of the left ventricle myocardium of adult male mice subjected to prolonged LSD or normal diet was analyzed from the perspective of the Genomic Fabric Paradigm. We found that LSD shifted the metabolic priorities by increasing the transcription control for fatty acids biosynthesis while decreasing it for steroid hormone biosynthesis. Moreover, LSD remodeled pathways responsible for cardiac muscle contraction (CMC), chronic Chagas (CHA), diabetic (DIA), dilated (DIL), and hypertrophic (HCM) cardiomyopathies, and their interplays with the glycolysis/glucogenesis (GLY), oxidative phosphorylation (OXP), and adrenergic signaling in cardiomyocytes (ASC). For instance, the statistically (p < 0.05) significant coupling between GLY and ASC was reduced by LSD from 13.82% to 2.91% (i.e., -4.75×), and that of ASC with HCM from 10.50% to 2.83% (-3.71×). The substantial up-regulation of the CMC, ASC, and OXP genes, and the significant weakening of the synchronization of the expression of the HCM, CHA, DIA, and DIL genes within their respective fabrics justify the benefits of the LSD recommendation.

2.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34462350

ABSTRACT

Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.


Subject(s)
Cerebral Intraventricular Hemorrhage/metabolism , Myelin Proteins/biosynthesis , PPAR gamma/metabolism , Amino Acid Transport Systems, Acidic/deficiency , Amino Acid Transport Systems, Acidic/metabolism , Animals , Animals, Newborn , Antiporters/deficiency , Antiporters/metabolism , Cerebral Intraventricular Hemorrhage/pathology , Disease Models, Animal , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Humans , Infant, Premature , Microglia/metabolism , Mitochondrial Diseases/metabolism , Oligodendroglia/pathology , PPAR gamma/agonists , Psychomotor Disorders/metabolism , Rabbits , Rosiglitazone/pharmacology , Sequence Analysis, RNA/methods
3.
EMBO J ; 35(17): 1923-34, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27458189

ABSTRACT

Elevated c-Jun levels result in apoptosis and are evident in neurodegenerative disorders such as Alzheimer's disease and dementia and after global cerebral insults including stroke and epilepsy. NMDA receptor (NMDAR) antagonists block c-Jun upregulation and prevent neuronal cell death following excitotoxic insults. However, the molecular mechanisms regulating c-Jun abundance in neurons are poorly understood. Here, we show that the synaptic component Proline rich 7 (PRR7) accumulates in the nucleus of hippocampal neurons following NMDAR activity. We find that PRR7 inhibits the ubiquitination of c-Jun by E3 ligase SCF(FBW) (7) (FBW7), increases c-Jun-dependent transcriptional activity, and promotes neuronal death. Microarray assays show that PRR7 abundance is directly correlated with transcripts associated with cellular viability. Moreover, PRR7 knockdown attenuates NMDAR-mediated excitotoxicity in neuronal cultures in a c-Jun-dependent manner. Our results show that PRR7 links NMDAR activity to c-Jun function and provide new insights into the molecular processes that underlie NMDAR-dependent excitotoxicity.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Proteins/metabolism , Neurons/physiology , Protein Processing, Post-Translational , Animals , Cell Survival , Cells, Cultured , Excitatory Amino Acid Agonists/metabolism , Hippocampus/pathology , Humans , Microarray Analysis , N-Methylaspartate/metabolism , Rats , Ubiquitination
4.
Mol Microbiol ; 95(3): 509-38, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25425211

ABSTRACT

Borrelia burgdorferi, the agent of Lyme disease, is maintained in nature within an enzootic cycle involving a mammalian reservoir and an Ixodes sp. tick vector. The transmission, survival and pathogenic potential of B. burgdorferi depend on the bacterium's ability to modulate its transcriptome as it transits between vector and reservoir host. Herein, we employed an amplification-microarray approach to define the B. burgdorferi transcriptomes in fed larvae, fed nymphs and in mammalian host-adapted organisms cultivated in dialysis membrane chambers. The results show clearly that spirochetes exhibit unique expression profiles during each tick stage and during cultivation within the mammal; importantly, none of these profiles resembles that exhibited by in vitro grown organisms. Profound shifts in transcript levels were observed for genes encoding known or predicted lipoproteins as well as proteins involved in nutrient uptake, carbon utilization and lipid synthesis. Stage-specific expression patterns of chemotaxis-associated genes also were noted, suggesting that the composition and interactivities of the chemotaxis machinery components vary considerably in the feeding tick and mammal. The results as a whole make clear that environmental sensing by B. burgdorferi directly or indirectly drives an extensive and tightly integrated modulation of cell envelope constituents, chemotaxis/motility machinery, intermediary metabolism and cellular physiology. These findings provide the necessary transcriptional framework for delineating B. burgdorferi regulatory pathways throughout the enzootic cycle as well as defining the contribution(s) of individual genes to spirochete survival in nature and virulence in humans.


Subject(s)
Borrelia burgdorferi/genetics , Ixodes/microbiology , Life Cycle Stages , Lyme Disease/microbiology , Transcriptome , Adaptation, Physiological , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Borrelia burgdorferi/growth & development , Borrelia burgdorferi/pathogenicity , Borrelia burgdorferi/physiology , Carbohydrate Metabolism/genetics , Cell Membrane/metabolism , Cell Movement , Cell Wall/metabolism , Chemotaxis/genetics , Gene Expression Regulation, Bacterial , Ixodes/growth & development , Larva/microbiology , Life Cycle Stages/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C3H , Nymph/microbiology , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Sigma Factor/genetics , Sigma Factor/metabolism
5.
Mol Genet Genomics ; 287(3): 237-46, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22246408

ABSTRACT

This study aimed to quantify the influence of the astrocyte proximity on myelination genomic fabric (MYE) of oligodendrocytes, defined as the most interconnected and stably expressed gene web responsible for myelination. Such quantitation is important to evaluate whether astrocyte signaling may contribute to demyelination when impaired and remyelination when properly restored. For this, we compared changes in the gene expression profiles of immortalized precursor oligodendrocytes (Oli-neu), stimulated to differentiate by the proximity of nontouching astrocytes or treatment with db-cAMP. In a previous paper, we reported that the astrocyte proximity upregulated or turned-on a large number of myelination genes and substantially enriched the Ca(2+)-signaling and cytokine receptor regulatory networks of MYE in Oli-neu cells. Here, we introduce the "transcriptomic distance" to evaluate fabric remodeling and "pair-wise relevance" to identify the most influential gene pairs. Together with the prominence gene analysis used to select and rank the fabric genes, these novel analytical tools provide a comprehensively quantitative view of the physio/pathological transformations of the transcriptomic programs of myelinating cells. Applied to our data, the analyses revealed not only that the astrocyte neighborhood is a substantially more powerful regulator of myelination than the differentiating treatment but also the molecular mechanisms of the two differentiating paradigms are different. By inducing a profound remodeling of MYE and regulatory transcriptomic networks, the astrocyte-oligodendrocyte intercommunication may be considered as a major player in both pathophysiology and therapy of neurodegenerative diseases related to myelination.


Subject(s)
Astrocytes/metabolism , Oligodendroglia/metabolism , Paracrine Communication , Transcriptome , Animals , Calcium Signaling , Gene Expression Profiling , Gene Expression Regulation , Genome , Humans , Mice , Mice, Inbred C57BL , Myelin Sheath/physiology , Receptors, Cytokine/genetics
6.
Cells ; 10(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209090

ABSTRACT

Decades of research identified genomic similarities among prostate cancer patients and proposed general solutions for diagnostic and treatments. However, each human is a dynamic unique with never repeatable transcriptomic topology and no gene therapy is good for everybody. Therefore, we propose the Genomic Fabric Paradigm (GFP) as a personalized alternative to the biomarkers approach. Here, GFP is applied to three (one primary-"A", and two secondary-"B" & "C") cancer nodules and the surrounding normal tissue ("N") from a surgically removed prostate tumor. GFP proved for the first time that, in addition to the expression levels, cancer alters also the cellular control of the gene expression fluctuations and remodels their networking. Substantial differences among the profiled regions were found in the pathways of P53-signaling, apoptosis, prostate cancer, block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance to chemotherapy, and sustained angiogenesis. ENTPD2, AP5M1 BAIAP2L1, and TOR1A were identified as the master regulators of the "A", "B", "C", and "N" regions, and potential consequences of ENTPD2 manipulation were analyzed. The study shows that GFP can fully characterize the transcriptomic complexity of a heterogeneous prostate tumor and identify the most influential genes in each cancer nodule.


Subject(s)
Precision Medicine , Prostatic Neoplasms/genetics , Aged , Apoptosis/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genes, Neoplasm , Genetic Therapy , Genomics , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism
7.
Sci Rep ; 11(1): 2743, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531573

ABSTRACT

Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.


Subject(s)
Ankyrins/genetics , Heart Atria/metabolism , Heart Ventricles/metabolism , Ion Channels/genetics , Myocardium/metabolism , Animals , Ankyrins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gluconeogenesis/genetics , Glycolysis/genetics , Ion Channels/metabolism , Male , Mice , Myocardial Contraction/genetics , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Signal Transduction/genetics , Transcriptome
8.
Genes (Basel) ; 12(8)2021 07 29.
Article in English | MEDLINE | ID: mdl-34440346

ABSTRACT

Neuropsychiatric manifestations of systemic lupus erythematosus (SLE), specifically cognitive dysfunction and mood disorders, are widely prevalent in SLE patients, and yet poorly understood. TNF-like weak inducer of apoptosis (TWEAK) has previously been implicated in the pathogenesis of neuropsychiatric lupus (NPSLE), and we have recently shown its effects on the transcriptome of the cortex of the lupus-prone mice model MRL/lpr. As the hippocampus is thought to be an important focus of NPSLE processes, we explored the TWEAK-induced transcriptional changes that occur in the hippocampus, and isolated several genes (Dnajc28, Syne2, transthyretin) and pathways (PI3K-AKT, as well as chemokine-signaling and neurotransmission pathways) that are most differentially affected by TWEAK activation. While the functional roles of these genes and pathways within NPSLE need to be further investigated, an interesting link between neuroinflammation and neurodegeneration appears to emerge, which may prove to be a promising novel direction in NPSLE research.


Subject(s)
Cytokine TWEAK/physiology , Genome , Hippocampus/physiopathology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/physiopathology , Animals , Cytokine TWEAK/genetics , Disease Models, Animal , Mice
9.
Biochem Biophys Res Commun ; 391(4): 1769-74, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20044980

ABSTRACT

The molecular mechanisms by which chronic hypoxia, whether constant (CCH) or intermittent (CIH), alters the heart rhythm are still under debate. Expression level, control, maturational profile and intercoordination of 54 genes encoding heart rhythm determinants (HRDs) were analyzed in 36 mice subjected for 1, 2 or 4 weeks of their early life to normal atmospheric conditions or to CCH or CIH. Our analysis revealed a complex network of genes encoding various heart rate, inotropy and development controllers, receptors, ion channels and transporters, ankyrins, epigenetic modulators and intercalated disc components (adherens, cadherins, catenins, desmosomal, gap and tight junction proteins). The network is remodeled during maturation and substantially and differently altered by CIH and CCH. Gene Prominence Analysis that ranks the genes according to their expression stability and networking within functional gene webs, confirmed the HRD status of certain epigenetic modulators and components of the intercalated discs not yet associated with arrhythmia.


Subject(s)
Heart Rate/genetics , Hypoxia/physiopathology , Animals , Epigenesis, Genetic , Female , Gene Expression Profiling , Genetic Variation , Hypoxia/genetics , Male , Mice
10.
Genes (Basel) ; 11(9)2020 09 02.
Article in English | MEDLINE | ID: mdl-32887258

ABSTRACT

Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.


Subject(s)
Biomarkers/metabolism , Carcinoma/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Thyroid Neoplasms/genetics , Apoptosis/genetics , Carcinoma/metabolism , Cell Cycle/genetics , Cell Proliferation/genetics , Genomics/methods , Humans , Membrane Glycoproteins/genetics , Thyroid Gland/metabolism , Thyroid Neoplasms/metabolism , Transcriptome/genetics
11.
Genes (Basel) ; 11(2)2020 01 23.
Article in English | MEDLINE | ID: mdl-31979420

ABSTRACT

Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), lung histology, and transcriptomes of six-week-old male rats with PH induced by (1) hypoxia (HO), (2) administration of monocrotaline (CM), or (3) administration of monocrotaline and exposure to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of the lung transcriptome were observed in all PH groups. The HM group exhibited the largest alterations, as well as neointimal lesions and obliteration of the lumen in small arteries. We found that PH increased the expression of caveolin1, matrix metallopeptidase 2, and numerous inflammatory and cell proliferation genes. The cell cycle, vascular smooth muscle contraction, and oxidative phosphorylation pathways, as well as their interplay, were largely perturbed. Our results also suggest that the upregulated Rhoa (Ras homolog family member A) mediates its action through expression coordination with several ATPases. The upregulation of antioxidant genes and the extensive mitochondrial damage observed, especially in the HM group, indicate metabolic shift toward aerobic glycolysis.


Subject(s)
Heart Ventricles/pathology , Hypertension, Pulmonary/physiopathology , Lung/pathology , Animals , Genomics , Heart Ventricles/metabolism , Hypertension, Pulmonary/metabolism , Hypertrophy, Right Ventricular/genetics , Hypoxia , Male , Monocrotaline , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Pulmonary Artery/pathology , Rats , Rats, Sprague-Dawley , Vasoconstriction
12.
Genes (Basel) ; 11(5)2020 05 07.
Article in English | MEDLINE | ID: mdl-32392822

ABSTRACT

We profiled the transcriptomes of primary mouse cortical astrocytes cultured alone or co-cultured with immortalized precursor oligodendrocytes (Oli-neu cells). Filters between the cell types prevented formation of hetero-cellular gap junction channels but allowed for free exchange of the two culture media. We previously reported that major functional pathways in the Oli-neu cells are remodeled by the proximity of non-touching astrocytes and that astrocytes and oligodendrocytes form a panglial transcriptomic syncytium in the brain. Here, we present evidence that the astrocyte transcriptome likewise changes significantly in the proximity of non-touching Oli-neu cells. Our results indicate that the cellular environment strongly modulates the transcriptome of each cell type and that integration in a heterocellular tissue changes not only the expression profile but also the expression control and networking of the genes in each cell phenotype. The significant decrease of the overall transcription control suggests that in the co-culture astrocytes are closer to their normal conditions from the brain. The Oli-neu secretome regulates astrocyte genes known to modulate neuronal synaptic transmission and remodels calcium, chemokine, NOD-like receptor, PI3K-Akt, and thyroid hormone signaling, as well as actin-cytoskeleton, autophagy, cell cycle, and circadian rhythm pathways. Moreover, the co-culture significantly changes the gene hierarchy in the astrocytes.


Subject(s)
Astrocytes/physiology , Transcriptome , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Animals , Astrocytes/ultrastructure , Cell Communication , Cell Cycle/genetics , Cell Shape , Cells, Cultured , Cerebral Cortex/cytology , Circadian Rhythm/genetics , Coculture Techniques , Culture Media, Conditioned/pharmacology , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Gap Junctions/metabolism , Gene Expression Regulation/genetics , Gene Ontology , Gene Regulatory Networks , Mice , Mice, Inbred C57BL , Oligodendrocyte Precursor Cells/cytology , Signal Transduction/genetics
13.
Cancers (Basel) ; 12(12)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302383

ABSTRACT

Published transcriptomic data from surgically removed metastatic clear cell renal cell carcinoma samples were analyzed from the genomic fabric paradigm (GFP) perspective to identify the best targets for gene therapy. GFP considers the transcriptome as a multi-dimensional mathematical object constrained by a dynamic set of expression controls and correlations among genes. Every gene in the chest wall metastasis, two distinct cancer nodules, and the surrounding normal tissue of the right kidney was characterized by three independent measures: average expression level, relative expression variation, and expression correlation with each other gene. The analyses determined the cancer-induced regulation, control, and remodeling of the chemokine and vascular endothelial growth factor (VEGF) signaling, apoptosis, basal transcription factors, cell cycle, oxidative phosphorylation, renal cell carcinoma, and RNA polymerase pathways. Interestingly, the three cancer regions exhibited different transcriptomic organization, suggesting that the gene therapy should not be personalized only for every patient but also for each major cancer nodule. The gene hierarchy was established on the basis of gene commanding height, and the gene master regulators DAPK3,TASOR, FAM27C and ALG13 were identified in each profiled region. We delineated the molecular mechanisms by which TASOR overexpression and ALG13 silencing would selectively affect the cancer cells with little consequences for the normal cells.

14.
Article in English | MEDLINE | ID: mdl-32626662

ABSTRACT

Chagas disease is responsible for more than 10,000 deaths per year and about 6 to 7 million infected people worldwide. In its chronic stage, patients can develop mega-colon, mega-esophagus, and cardiomyopathy. Differences in clinical outcomes may be determined, in part, by the genetic background of the parasite that causes Chagas disease. Trypanosoma cruzi has a high genetic diversity, and each group of strains may elicit specific pathological responses in the host. Conflicting results have been reported in studies using various combinations of mammalian host-T. cruzi strains. We previously profiled the transcriptomic signatures resulting from infection of L6E9 rat myoblasts with four reference strains of T. cruzi (Brazil, CL, Y, and Tulahuen). The four strains induced similar overall gene expression alterations in the myoblasts, although only 21 genes were equally affected by all strains. Cardiotrophin-like cytokine factor 1 (Clcf1) was one of the genes found to be consistently upregulated by the infection with all four strains of T. cruzi. This cytokine is a member of the interleukin-6 family that binds to glycoprotein 130 receptor and activates the JAK/STAT signaling pathway, which may lead to muscle cell hypertrophy. Another commonly upregulated gene was tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta (Ywhaq, 14-3-3 protein Θ), present in the Cell Cycle Pathway. In the present work, we reanalyzed our previous microarray dataset, aiming at understanding in more details the transcriptomic impact that each strain has on JAK/STAT signaling and Cell Cycle pathways. Using Pearson correlation analysis between the expression levels of gene pairs in biological replicas from each pathway, we determined the coordination between such pairs in each experimental condition and the predicted protein interactions between the significantly altered genes by each strain. We found that although these highlighted genes were similarly affected by all four strains, the downstream genes or their interaction partners were not necessarily equally affected, thus reinforcing the idea of the role of parasite background on host cell transcriptome. These new analyses provide further evidence to the mechanistic understanding of how distinct T. cruzi strains lead to diverse remodeling of host cell transcriptome.


Subject(s)
Trypanosoma cruzi , Animals , Brazil , Cell Cycle , Humans , Myoblasts , Rats , Signal Transduction , Transcriptome , Trypanosoma cruzi/genetics
15.
Genes (Basel) ; 10(8)2019 07 25.
Article in English | MEDLINE | ID: mdl-31349573

ABSTRACT

The dynamic and never exactly repeatable tumor transcriptomic profile of people affected by the same form of cancer requires a personalized and time-sensitive approach of the gene therapy. The Gene Master Regulators (GMRs) were defined as genes whose highly controlled expression by the homeostatic mechanisms commands the cell phenotype by modulating major functional pathways through expression correlation with their genes. The Gene Commanding Height (GCH), a measure that combines the expression control and expression correlation with all other genes, is used to establish the gene hierarchy in each cell phenotype. We developed the experimental protocol, the mathematical algorithm and the computer software to identify the GMRs from transcriptomic data in surgically removed tumors, biopsies or blood from cancer patients. The GMR approach is illustrated with applications to our microarray data on human kidney, thyroid and prostate cancer samples, and on thyroid, prostate and blood cancer cell lines. We proved experimentally that each patient has his/her own GMRs, that cancer nuclei and surrounding normal tissue are governed by different GMRs, and that manipulating the expression has larger consequences for genes with higher GCH. Therefore, we launch the hypothesis that silencing the GMR may selectively kill the cancer cells from a tissue.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Regulator , Kidney Neoplasms/genetics , Precision Medicine/methods , Prostatic Neoplasms/genetics , Software , Thyroid Neoplasms/genetics , Aged , Cell Line, Tumor , Female , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Male , Models, Theoretical , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology
16.
Genes (Basel) ; 10(10)2019 09 26.
Article in English | MEDLINE | ID: mdl-31561430

ABSTRACT

Transcriptional responses to the appropriate temporal pattern of action potential firing are essential for long-term adaption of neuronal properties to the functional activity of neural circuits and environmental experience. However, standard transcriptome analysis methods can be too limited in identifying critical aspects that coordinate temporal coding of action potential firing with transcriptome response. A Pearson correlation analysis was applied to determine how pairs of genes in the mouse dorsal root ganglion (DRG) neurons are coordinately expressed in response to stimulation producing the same number of action potentials by two different temporal patterns. Analysis of 4728 distinct gene-pairs related to calcium signaling, 435,711 pairs of transcription factors, 820 pairs of voltage-gated ion channels, and 86,862 pairs of calcium signaling genes with transcription factors indicated that genes become coordinately activated by distinct action potential firing patterns and this depends on the duration of stimulation. Moreover, a measure of expression variance revealed that the control of transcripts abundances is sensitive to the pattern of stimulation. Thus, action potentials impact intracellular signaling and the transcriptome in dynamic manner that not only alter gene expression levels significantly (as previously reported) but also affects the control of their expression fluctuations and profoundly remodel the transcriptional networks.


Subject(s)
Action Potentials , Gene Regulatory Networks , Neurons/metabolism , Transcriptome , Animals , Calcium Signaling , Cells, Cultured , Ganglia, Spinal/cytology , Mice , Neurons/physiology , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Sodium Channels/genetics , Sodium Channels/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Prog Biophys Mol Biol ; 94(1-2): 169-85, 2007.
Article in English | MEDLINE | ID: mdl-17507080

ABSTRACT

Microarray experiments have generally focused on magnitude of gene expression changes in pathological conditions, thereby using the method as a high throughput screen to identify candidate marker genes and/or to validate phenotypic differences. We have used novel strategies to extract additional information from array studies, including expression variability and coordination, from which organizational principles of transcriptomes are emerging. We have reported that the expression level, variability and coordination of numerous genes are regulated in brains of connexin43 null (Gja1(-/-)) mouse with respect to wildtype. Moreover, expression coordination with Gja1 in wildtype largely predicted the expression regulation in Gja1(-/-) tissues. We now report a remarkable overlap between regulations in Gja1(-/-) and connexin32 null (Gjb1(-/-)) brains, and that both differ markedly from those in connexin36 null (Gja9(-/-)) brain. Since in brain these three connexins are expressed in different cell types (Cx43 in astrocytes, ependymal and vascular cells, Gjb1 in oligodendrocytes, and Cx36 in neurons and microglia), and because astrocytes and oligodendrocytes (and possibly neurons and microglia) may form syncytia coupled by gap junction channels, these observations suggest the existence of distinct connexin-dependent panglial and neuronal transcriptomic networks. Such networks, where linkage partners are rearranged and strengths modified in brains of knockouts, may explain downstream and parallel "ripples" of phenotypic change resulting from single gene manipulations as illustrated by alterations in transcription factor networks resulting from deletion of Gja1 or Gjb1. The transcription factors also formed network hubs with genes from other functional categories, thus allowing regulation of one functional pathway through manipulation of another.


Subject(s)
Brain/metabolism , Connexins/metabolism , Nerve Net/physiology , Nerve Tissue Proteins/metabolism , Proteome/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , Animals , Mice , Organ Specificity , Tissue Distribution
18.
Prog Biophys Mol Biol ; 94(1-2): 245-64, 2007.
Article in English | MEDLINE | ID: mdl-17462721

ABSTRACT

The purpose of this paper is to provide a brief overview of current thinking on the role of connexins, in particular Cx43, in growth regulation, and a more detailed discussion as to potential mechanisms involved with an emphasis on gene expression. While the precise molecular mechanism by which connexins can affect the growth of normal or tumor cells remains elusive, a number of exciting reports have expanded our understanding and are presented in some detail. Thus, we will discuss (Section 2): the role of protein-protein interactions in integrating connexins into multiple signal transduction pathways; phosphorylation at specific sites and reversal of growth inhibition; the role of the carboxy-terminal regulatory domain as a signaling molecule. Some of our latest work on the potential functions of endogenously produced carboxy-terminal fragments of Cx43 are also presented (Section 3). Finally, Section 4 will pay tribute to the rapidly emerging realization that connexins such as Cx43 and Cx32 exert important and extensive effects on gene expression, particularly those genes linked to growth regulation.


Subject(s)
Adaptation, Physiological/physiology , Cell Proliferation , Connexins/metabolism , Gap Junctions/metabolism , Gene Expression Regulation/physiology , Signal Transduction/physiology , Animals , Humans , Models, Biological
19.
Exp Brain Res ; 191(3): 289-300, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18704384

ABSTRACT

Changes in gravitational force such as that experienced by astronauts during space flight induce a redistribution of fluids from the caudad to the cephalad portion of the body together with an elimination of normal head-to-foot hydrostatic pressure gradients. To assess brain gene profile changes associated with microgravity and fluid shift, a large-scale analysis of mRNA expression levels was performed in the brains of 2-week control and hindlimb-unloaded (HU) mice using cDNA microarrays. Although to different extents, all functional categories displayed significantly regulated genes indicating that considerable transcriptomic alterations are induced by HU. Interestingly, the TIC class (transport of small molecules and ions into the cells) had the highest percentage of up-regulated genes, while the most down-regulated genes were those of the JAE class (cell junction, adhesion, extracellular matrix). TIC genes comprised 16% of those whose expression was altered, including sodium channel, nonvoltage-gated 1 beta (Scnn1b), glutamate receptor (Grin1), voltage-dependent anion channel 1 (Vdac1), calcium channel beta 3 subunit (Cacnb3) and others. The analysis performed by GeneMAPP revealed several altered protein classes and functional pathways such as blood coagulation and immune response, learning and memory, ion channels and cell junction. In particular, data indicate that HU causes an alteration in hemostasis which resolves in a shift toward a more hyper-coagulative state with an increased risk of venous thrombosis. Furthermore, HU treatment seems to impact on key steps of synaptic plasticity and learning processes.


Subject(s)
Brain/physiology , Gene Expression Regulation , Oligonucleotide Array Sequence Analysis , Weightlessness , Animals , Hindlimb Suspension/physiology , Male , Mice , Mice, Inbred C57BL , Transcription, Genetic
20.
Neural Regen Res ; 13(10): 1715-1718, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30136682

ABSTRACT

Inflammation is an established etiopathogenesis factor of infantile spasms (IS), a therapy-resistant epileptic syndrome of infancy. We investigated the IS-associated transcriptomic alterations of neurotransmission in rat hypothalamic arcuate nucleus, how they are corrected by antiinflamatory treatments and whether there are sex differences. IS was triggered by repeated intraperitoneal administration of N-methyl-D-aspartic acid following anti-inflammatory treatment (adreno-cortico-tropic-hormone (ACTH) or PMX53) or normal saline vehicle to prenatally exposed to betamethasone young rats. We found that treatments with both ACTH and PMX53 resulted in substantial recovery of the genomic fabrics of all types of synaptic transmission altered by IS. While ACTH represents the first line of treatment for IS, the even higher efficiency of PMX53 (an antagonist of the complement C5a receptor) in restoring the normal transcriptome was not expected. In addition to the childhood epilepsy, the recovery of the neurotransmission genomic fabrics by PMX53 also gives hope for the autism spectrum disorders that share a high comorbidity with IS. Our results revealed significant sex dichotomy in both IS-associated transcriptomic alterations (males more affected) and in the efficiency of PMX53 anti-inflammatory treatment (better for males). Our data further suggest that anti-inflammatory treatments correcting alterations in the inflammatory transcriptome may become successful therapies for refractory epilepsies.

SELECTION OF CITATIONS
SEARCH DETAIL