Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2569, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519473

ABSTRACT

The B cell response in the germinal centre (GC) reaction requires a unique bioenergetic supply. Although mitochondria are remodelled upon antigen-mediated B cell receptor stimulation, mitochondrial function in B cells is still poorly understood. To gain a better understanding of the role of mitochondria in B cell function, here we generate mice with B cell-specific deficiency in Tfam, a transcription factor necessary for mitochondrial biogenesis. Tfam conditional knock-out (KO) mice display a blockage of the GC reaction and a bias of B cell differentiation towards memory B cells and aged-related B cells, hallmarks of an aged immune response. Unexpectedly, blocked GC reaction in Tfam KO mice is not caused by defects in the bioenergetic supply but is associated with a defect in the remodelling of the lysosomal compartment in B cells. Our results may thus describe a mitochondrial function for lysosome regulation and the downstream antigen presentation in B cells during the GC reaction, the dysruption of which is manifested as an aged immune response.


Subject(s)
B-Lymphocytes , Mitochondria , Mice , Animals , Mitochondria/genetics , Germinal Center , Mice, Knockout , Lymphocyte Activation
2.
Methods Mol Biol ; 2675: 109-115, 2023.
Article in English | MEDLINE | ID: mdl-37258759

ABSTRACT

The study of immunometabolism is an important and emerging field in immunology. B-cell activation upon antigen recognition induces profound metabolic changes in the cell, leading to an increase in ATP production to sustain cell proliferation and differentiation. Current methods available to determine the amount of ATP are time-consuming, require extensive sample processing, and need a large amount of starting material. We set up an easy follow-up protocol to determine the relative amount of ATP in living cells, combining cell surface staining with quinacrine. This acridine dye emits a green fluorescent signal in the presence of intracellular ATP. This protocol allows us to determine ATP in small populations of cells using flow cytometry, such as the germinal center.


Subject(s)
B-Lymphocytes , Germinal Center , Lymphocyte Activation , Cell Differentiation , Flow Cytometry , Adenosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL