Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nat Immunol ; 24(8): 1265-1280, 2023 08.
Article in English | MEDLINE | ID: mdl-37414907

ABSTRACT

High-dimensional approaches have revealed heterogeneity amongst dendritic cells (DCs), including a population of transitional DCs (tDCs) in mice and humans. However, the origin and relationship of tDCs to other DC subsets has been unclear. Here we show that tDCs are distinct from other well-characterized DCs and conventional DC precursors (pre-cDCs). We demonstrate that tDCs originate from bone marrow progenitors shared with plasmacytoid DCs (pDCs). In the periphery, tDCs contribute to the pool of ESAM+ type 2 DCs (DC2s), and these DC2s have pDC-related developmental features. Different from pre-cDCs, tDCs have less turnover, capture antigen, respond to stimuli and activate antigen-specific naïve T cells, all characteristics of differentiated DCs. Different from pDCs, viral sensing by tDCs results in IL-1ß secretion and fatal immune pathology in a murine coronavirus model. Our findings suggest that tDCs are a distinct pDC-related subset with a DC2 differentiation potential and unique proinflammatory function during viral infections.


Subject(s)
Bone Marrow , Dendritic Cells , Animals , Mice , Antiviral Agents , Bone Marrow/immunology , Cell Differentiation , Dendritic Cells/classification , Dendritic Cells/immunology
2.
Immunity ; 55(3): 405-422.e11, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35180378

ABSTRACT

Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.


Subject(s)
B-Lymphocytes , Dendritic Cells , Animals , Cell Count , Chorea , Hematopoietic Stem Cells , Mice
3.
Nat Immunol ; 16(10): 1060-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343536

ABSTRACT

Treatment with ionizing radiation (IR) can lead to the accumulation of tumor-infiltrating regulatory T cells (Treg cells) and subsequent resistance of tumors to radiotherapy. Here we focused on the contribution of the epidermal mononuclear phagocytes Langerhans cells (LCs) to this phenomenon because of their ability to resist depletion by high-dose IR. We found that LCs resisted apoptosis and rapidly repaired DNA damage after exposure to IR. In particular, we found that the cyclin-dependent kinase inhibitor CDKN1A (p21) was overexpressed in LCs and that Cdkn1a(-/-) LCs underwent apoptosis and accumulated DNA damage following IR treatment. Wild-type LCs upregulated major histocompatibility complex class II molecules, migrated to the draining lymph nodes and induced an increase in Treg cell numbers upon exposure to IR, but Cdkn1a(-/-) LCs did not. Our findings suggest a means for manipulating the resistance of LCs to IR to enhance the response of cutaneous tumors to radiotherapy.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Langerhans Cells/radiation effects , Radiation, Ionizing , T-Lymphocytes, Regulatory/radiation effects , Animals , Cell Survival/genetics , Cell Survival/radiation effects , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/genetics , Flow Cytometry , Mice , Microarray Analysis , Polymerase Chain Reaction , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Up-Regulation
4.
Nat Methods ; 20(7): 1070-1081, 2023 07.
Article in English | MEDLINE | ID: mdl-37291262

ABSTRACT

The development of transgenic mouse models that express genes of interest in specific cell types has transformed our understanding of basic biology and disease. However, generating these models is time- and resource-intensive. Here we describe a model system, SELective Expression and Controlled Transduction In Vivo (SELECTIV), that enables efficient and specific expression of transgenes by coupling adeno-associated virus (AAV) vectors with Cre-inducible overexpression of the multi-serotype AAV receptor, AAVR. We demonstrate that transgenic AAVR overexpression greatly increases the efficiency of transduction of many diverse cell types, including muscle stem cells, which are normally refractory to AAV transduction. Superior specificity is achieved by combining Cre-mediated AAVR overexpression with whole-body knockout of endogenous Aavr, which is demonstrated in heart cardiomyocytes, liver hepatocytes and cholinergic neurons. The enhanced efficacy and exquisite specificity of SELECTIV has broad utility in development of new mouse model systems and expands the use of AAV for gene delivery in vivo.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Mice , Animals , Genetic Vectors/genetics , Mice, Transgenic , Genetic Therapy , Transgenes , Dependovirus/genetics , Transduction, Genetic
5.
Immunity ; 47(6): 1037-1050.e6, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29221729

ABSTRACT

Given the limited efficacy of clinical approaches that rely on ex vivo generated dendritic cells (DCs), it is imperative to design strategies that harness specialized DC subsets in situ. This requires delineating the expression of surface markers by DC subsets among individuals and tissues. Here, we performed a multiparametric phenotypic characterization and unbiased analysis of human DC subsets in blood, tonsil, spleen, and skin. We uncovered previously unreported phenotypic heterogeneity of human cDC2s among individuals, including variable expression of functional receptors such as CD172a. We found marked differences in DC subsets localized in blood and lymphoid tissues versus skin, and a striking absence of the newly discovered Axl+ DCs in the skin. Finally, we evaluated the capacity of anti-receptor monoclonal antibodies to deliver vaccine components to skin DC subsets. These results offer a promising path for developing DC subset-specific immunotherapies that cannot be provided by transcriptomic analysis alone.


Subject(s)
Antigens, Differentiation/immunology , Biological Variation, Individual , Dendritic Cells/immunology , Phenotype , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Receptors, Immunologic/immunology , Skin/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Monoclonal/pharmacokinetics , Antigens, CD/genetics , Antigens, CD/immunology , Antigens, Differentiation/genetics , Biomarkers/analysis , Cancer Vaccines/administration & dosage , Cancer Vaccines/biosynthesis , Cytophotometry/methods , Dendritic Cells/cytology , Female , Gene Expression , Humans , Immunophenotyping , Immunotherapy , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Organ Specificity , Palatine Tonsil/cytology , Palatine Tonsil/immunology , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/deficiency , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Immunologic/genetics , Skin/cytology , Spleen/cytology , Spleen/immunology , Axl Receptor Tyrosine Kinase
6.
Immunity ; 44(4): 924-38, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27096321

ABSTRACT

Large numbers of melanoma lesions develop resistance to targeted inhibition of mutant BRAF or fail to respond to checkpoint blockade. We explored whether modulation of intratumoral antigen-presenting cells (APCs) could increase responses to these therapies. Using mouse melanoma models, we found that CD103(+) dendritic cells (DCs) were the only APCs transporting intact antigens to the lymph nodes and priming tumor-specific CD8(+) T cells. CD103(+) DCs were required to promote anti-tumoral effects upon blockade of the checkpoint ligand PD-L1; however, PD-L1 inhibition only led to partial responses. Systemic administration of the growth factor FLT3L followed by intratumoral poly I:C injections expanded and activated CD103(+) DC progenitors in the tumor, enhancing responses to BRAF and PD-L1 blockade and protecting mice from tumor rechallenge. Thus, the paucity of activated CD103(+) DCs in tumors limits checkpoint-blockade efficacy and combined FLT3L and poly I:C therapy can enhance tumor responses to checkpoint and BRAF blockade.


Subject(s)
Antigens, CD/metabolism , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Integrin alpha Chains/metabolism , Melanoma, Experimental/immunology , Poly I-C/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/pharmacology , Animals , Antigen Presentation/immunology , Cell Line, Tumor , Dendritic Cells/cytology , Mice, Inbred C57BL , Mice, Knockout
7.
Cell ; 143(3): 416-29, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21029863

ABSTRACT

Dendritic cells (DCs), critical antigen-presenting cells for immune control, normally derive from bone marrow precursors distinct from monocytes. It is not yet established if the large reservoir of monocytes can develop into cells with critical features of DCs in vivo. We now show that fully differentiated monocyte-derived DCs (Mo-DCs) develop in mice and DC-SIGN/CD209a marks the cells. Mo-DCs are recruited from blood monocytes into lymph nodes by lipopolysaccharide and live or dead gram-negative bacteria. Mobilization requires TLR4 and its CD14 coreceptor and Trif. When tested for antigen-presenting function, Mo-DCs are as active as classical DCs, including cross-presentation of proteins and live gram-negative bacteria on MHC I in vivo. Fully differentiated Mo-DCs acquire DC morphology and localize to T cell areas via L-selectin and CCR7. Thus the blood monocyte reservoir becomes the dominant presenting cell in response to select microbes, yielding DC-SIGN(+) cells with critical functions of DCs.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Differentiation , Dendritic Cells/cytology , Escherichia coli/immunology , Lectins, C-Type/metabolism , Monocytes/cytology , Receptors, Cell Surface/metabolism , Animals , Antigen Presentation , Cell Adhesion Molecules/immunology , Dendritic Cells/immunology , L-Selectin/immunology , Lectins, C-Type/immunology , Lipopolysaccharide Receptors/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monocytes/immunology , Receptors, CCR7/immunology , Receptors, Cell Surface/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology
8.
Nature ; 572(7770): 481-487, 2019 08.
Article in English | MEDLINE | ID: mdl-31391585

ABSTRACT

Experimental autoimmune encephalomyelitis is a model for multiple sclerosis. Here we show that induction generates successive waves of clonally expanded CD4+, CD8+ and γδ+ T cells in the blood and central nervous system, similar to gluten-challenge studies of patients with coeliac disease. We also find major expansions of CD8+ T cells in patients with multiple sclerosis. In autoimmune encephalomyelitis, we find that most expanded CD4+ T cells are specific for the inducing myelin peptide MOG35-55. By contrast, surrogate peptides derived from a yeast peptide major histocompatibility complex library of some of the clonally expanded CD8+ T cells inhibit disease by suppressing the proliferation of MOG-specific CD4+ T cells. These results suggest that the induction of autoreactive CD4+ T cells triggers an opposing mobilization of regulatory CD8+ T cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Adult , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Celiac Disease , Clone Cells/cytology , Clone Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , H-2 Antigens/immunology , Humans , Immunization , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myelin-Associated Glycoprotein/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Young Adult
10.
Cell ; 146(4): 660-660.e2, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21854989
11.
Eur J Immunol ; 47(2): 345-352, 2017 02.
Article in English | MEDLINE | ID: mdl-27859043

ABSTRACT

Influenza virus infection triggers an increase in the number of monocyte-derived dendritic cells (moDCs) in the respiratory tract, but the role of these cells during antiviral immunity is still unclear. Here we show that during influenza infection, moDCs dominate the late activation of CD8+ T cells and trigger the switch in immunodominance of the CD8+ T-cell response from acidic polymerase specificity to nucleoprotein specificity. Abrogation of monocyte recruitment or depletion of moDCs strongly compromised host resistance to secondary influenza challenge. These findings underscore a novel function of moDCs in the antiviral response to influenza virus, and have important implications for vaccine design.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Monocytes/immunology , Orthomyxoviridae Infections/immunology , T-Cell Antigen Receptor Specificity , Animals , Cells, Cultured , Dendritic Cells/virology , Immunodominant Epitopes/immunology , Immunologic Memory , Lung/virology , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Viral Core Proteins/immunology
12.
J Infect Dis ; 214(suppl 3): S275-S280, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27521367

ABSTRACT

A number of previous studies have identified antigen-presenting cells (APCs) as key targets of Ebola virus (EBOV), but the role of APCs in human Ebola virus disease (EVD) is not known. We have evaluated the phenotype and kinetics of monocytes, neutrophils, and dendritic cells (DCs) in peripheral blood of patients for whom EVD was diagnosed by the European Mobile Laboratory in Guinea. Acute EVD was characterized by reduced levels of circulating nonclassical CD16+ monocytes with a poor activation profile. In survivors, CD16+ monocytes were activated during recovery, coincident with viral clearance, suggesting an important role of this cell subset in EVD pathophysiology.


Subject(s)
Dendritic Cells/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Monocytes/immunology , Neutrophils/immunology , Receptors, IgG/immunology , Dendritic Cells/virology , Ebolavirus/isolation & purification , Female , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/physiopathology , Hemorrhagic Fever, Ebola/virology , Humans , Kinetics , Mobile Health Units , Monocytes/virology , Neutrophils/virology , Phenotype
13.
Nat Chem Biol ; 9(4): 250-6, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23416331

ABSTRACT

Targeted delivery of antigens to dendritic cells (DCs) is a promising vaccination strategy. However, to ensure immunity, the approach depends on coadministration of an adjuvant. Here we ask whether targeting of both adjuvant and antigen to DCs is sufficient to induce immunity. Using a protein ligation method, we develop a general approach for linking the immune stimulant, poly dA:dT (pdA:dT), to a monoclonal antibody (mAb) specific for DEC205 (DEC). We show that DEC-specific mAbs deliver pdA:dT to DCs for the efficient production of type I interferon in human monocyte-derived DCs and in mice. Notably, adaptive T-cell immunity is elicited when mAbs specific for DEC-pdA:dT are used as the activation stimuli and are administered together with a DC-targeted antigen. Collectively, our studies indicate that DCs can integrate innate and adaptive immunity in vivo and suggest that dual delivery of antigen and adjuvant to DCs might be an efficient approach to vaccine development.


Subject(s)
Adaptive Immunity/drug effects , Antibodies, Monoclonal/immunology , Antigens, CD/immunology , Antigens/immunology , Dendritic Cells/drug effects , Immunity, Innate/drug effects , Immunoconjugates/immunology , Lectins, C-Type/immunology , Poly dA-dT/immunology , Receptors, Cell Surface/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antigens/administration & dosage , Antigens/chemistry , Antigens, CD/administration & dosage , Antigens, CD/chemistry , Dendritic Cells/immunology , Drug Delivery Systems , Genetic Vectors , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Interferon Type I/biosynthesis , Interferon Type I/immunology , Lectins, C-Type/administration & dosage , Lectins, C-Type/chemistry , Mice , Mice, Inbred C57BL , Minor Histocompatibility Antigens , Plasmids , Poly dA-dT/administration & dosage , Poly dA-dT/chemistry , Receptors, Cell Surface/administration & dosage , Receptors, Cell Surface/chemistry
14.
J Immunol ; 188(5): 2146-55, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22291181

ABSTRACT

Incorporation of Ags by dendritic cells (DCs) increases when Ags are targeted to endocytic receptors by mAbs. We have previously demonstrated in the mouse that mAbs against C-type lectins administered intradermally are taken up by epidermal Langerhans cells (LCs), dermal Langerin(neg) DCs, and dermal Langerin(+) DCs in situ. However, the relative contribution of these skin DC subsets to the induction of immune responses after Ag targeting has not been addressed in vivo. We show in this study that murine epidermal LCs and dermal DCs transport intradermally injected mAbs against the lectin receptor DEC-205/CD205 in vivo. Skin DCs targeted in situ with mAbs migrated through lymphatic vessels in steady state and inflammation. In the skin-draining lymph nodes, targeting mAbs were found in resident CD8α(+) DCs and in migrating skin DCs. More than 70% of targeted DCs expressed Langerin, including dermal Langerin(+) DCs and LCs. Numbers of targeted skin DCs in the nodes increased 2-3-fold when skin was topically inflamed by the TLR7 agonist imiquimod. Complete removal of the site where OVA-coupled anti-DEC-205 had been injected decreased endogenous cytotoxic responses against OVA peptide-loaded target cells by 40-50%. Surprisingly, selective ablation of all Langerin(+) skin DCs in Langerin-DTR knock-in mice did not affect such responses independently of the adjuvant chosen. Thus, in cutaneous immunization strategies where Ag is targeted to DCs, Langerin(+) skin DCs play a major role in transport of anti-DEC-205 mAb, although Langerin(neg) dermal DCs and CD8α(+) DCs are sufficient to subsequent CD8(+) T cell responses.


Subject(s)
Antibodies/administration & dosage , Antigens, CD/immunology , Antigens, Surface/biosynthesis , Dendritic Cells/immunology , Inflammation Mediators/physiology , Lectins, C-Type/biosynthesis , Lectins, C-Type/immunology , Mannose-Binding Lectins/biosynthesis , Receptors, Cell Surface/immunology , Skin/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Antigens, Surface/physiology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Gene Knock-In Techniques , Inflammation Mediators/metabolism , Injections, Intradermal , Langerhans Cells/immunology , Langerhans Cells/metabolism , Lectins, C-Type/physiology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mannose-Binding Lectins/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens , Organ Culture Techniques , Protein Transport/genetics , Protein Transport/immunology , Rats , Skin/metabolism , Skin/pathology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/pathology
15.
J Immunol ; 188(3): 1147-55, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22210914

ABSTRACT

Members of the triggering expressed on myeloid cells (Trem) receptor family fine-tune inflammatory responses. We previously identified one of these receptors, called Treml4, expressed mainly in the spleen, as well as at high levels by CD8α(+) dendritic cells and macrophages. Like other Trem family members, Treml4 has an Ig-like extracellular domain and a short cytoplasmic tail that associates with the adaptor DAP12. To follow up on our initial results that Treml4-Fc fusion proteins bind necrotic cells, we generated a knockout mouse to assess the role of Treml4 in the uptake and presentation of dying cells in vivo. Loss of Treml4 expression did not impair uptake of dying cells by CD8α(+) dendritic cells or cross-presentation of cell-associated Ag to CD8(+) T cells, suggesting overlapping function between Treml4 and other receptors in vivo. To further investigate Treml4 function, we took advantage of a newly generated mAb against Treml4 and engineered its H chain to express three different Ags (i.e., OVA, HIV GAGp24, and the extracellular domain of the breast cancer protein HER2). OVA directed to Treml4 was efficiently presented to CD8(+) and CD4(+) T cells in vivo. Anti-Treml4-GAGp24 mAbs, given along with a maturation stimulus, induced Th1 Ag-specific responses that were not observed in Treml4 knockout mice. Also, HER2 targeting using anti-Treml4 mAbs elicited combined CD4(+) and CD8(+) T cell immunity, and both T cells participated in resistance to a transplantable tumor. Therefore, Treml4 participates in Ag presentation in vivo, and targeting Ags with anti-Treml4 Abs enhances immunization of otherwise naive mice.


Subject(s)
Antigen Presentation/immunology , Receptor, ErbB-2/immunology , Receptors, Immunologic/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal/pharmacology , Immunity, Cellular , Immunization , Mice , Mice, Knockout , Protective Agents , Protein Engineering
16.
Proc Natl Acad Sci U S A ; 108(6): 2384-9, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21262813

ABSTRACT

Improved protein-based vaccines should facilitate the goal of effective vaccines against HIV and other pathogens. With respect to T cells, the efficiency of immunization, or "immunogenicity," is improved by targeting vaccine proteins to maturing dendritic cells (DCs) within mAbs to DC receptors. Here, we compared the capacity of Langerin/CD207, DEC205/CD205, and Clec9A receptors, each expressed on the CD8(+) DC subset in mice, to bring about immunization of microbial-specific T cells from the polyclonal repertoire, using HIV gag-p24 protein as an antigen. α-Langerin mAb targeted splenic CD8(+) DCs selectively in vivo, whereas α-DEC205 and α-Clec9A mAbs targeted additional cell types. When the mAb heavy chains were engineered to express gag-p24, the α-Langerin, α-DEC205, and α-Clec9A fusion mAbs given along with a maturation stimulus induced comparable levels of gag-specific T helper 1 (Th1) and CD8(+) T cells in BALB/c × C57BL/6 F1 mice. These immune T cells were more numerous than targeting the CD8(-) DC subset with α-DCIR2-gag-p24. In an in vivo assay in which gag-primed T cells were used to report the early stages of T-cell responses, α-Langerin, α-DEC205, and α-Clec9A also mediated cross-presentation to primed CD8(+) T cells if, in parallel to antigen uptake, the DCs were stimulated with α-CD40. α-Langerin, α-DEC205, and α-Clec9A targeting greatly enhanced T-cell immunization relative to nonbinding control mAb or nontargeted HIV gag-p24 protein. Therefore, when the appropriate subset of DCs is targeted with a vaccine protein, several different receptors expressed by that subset are able to initiate combined Th1 and CD8(+) immunity.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/pharmacology , Antigens, CD/immunology , Antigens, Surface/immunology , CD8 Antigens , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , HIV Core Protein p24/immunology , Lectins, C-Type/immunology , Mannose-Binding Lectins/immunology , Receptors, Cell Surface/immunology , Receptors, Immunologic/immunology , Th1 Cells/immunology , AIDS Vaccines/pharmacology , Animals , Antibodies, Monoclonal/immunology , HIV Core Protein p24/pharmacology , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Minor Histocompatibility Antigens
17.
J Am Chem Soc ; 135(1): 286-92, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23265282

ABSTRACT

Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.


Subject(s)
Antibodies, Monoclonal/chemistry , Inteins , Antibodies, Monoclonal/isolation & purification , Esters/chemical synthesis , Esters/chemistry , Esters/isolation & purification , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
18.
Mol Immunol ; 159: 38-45, 2023 07.
Article in English | MEDLINE | ID: mdl-37269733

ABSTRACT

Since their discovery, the identity of plasmacytoid dendritic cells (pDCs) has been at the center of a continuous dispute in the field, and their classification as dendritic cells (DCs) has been recently re-challenged. pDCs are different enough from the rest of the DC family members to be considered a lineage of cells on their own. Unlike the exclusive myeloid ontogeny of cDCs, pDCs may have dual origin developing from myeloid and lymphoid progenitors. Moreover, pDCs have the unique ability to quickly secrete abundant levels of type I interferon (IFN-I) in response to viral infections. In addition, pDCs undergo a differentiation process after pathogen recognition that allows them to activate T cells, a feature that has been shown to be independent of presumed contaminating cells. Here, we aim to provide an overview of the historic and current understanding of pDCs and argue that their classification as either lymphoid or myeloid may be an oversimplification. Instead, we propose that the capacity of pDCs to link the innate and adaptive immune response by directly sensing pathogens and activating adaptive immune responses justify their inclusion within the DC network.


Subject(s)
Adaptive Immunity , T-Lymphocytes , Cell Differentiation , Dendritic Cells , Immunity, Humoral
19.
Sci Immunol ; 8(84): eadd7446, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37294749

ABSTRACT

The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.


Subject(s)
Interferon Type I , Neoplasms , Humans , Monocytes , Neoplasms/radiotherapy , Cell Differentiation , Interferon Type I/pharmacology , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment
20.
Proc Natl Acad Sci U S A ; 106(49): 20918-23, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19906988

ABSTRACT

Dendritic cells (DC) are the professional antigen presenting cells (APC) that bridge the innate and adaptive immune system. Previously, in a CD11c/EYFP transgenic mouse developed to study DC functions, we anatomically mapped and phenotypically characterized a discrete population of EYFP(+) cells within the microglia that we termed brain dendritic cells (bDC). In this study, we advanced our knowledge of the function of these cells in the CD11c/EYFP transgenic mouse and its chimeras, using acute stimuli of stereotaxically inoculated IFNgamma or IL-4 into the CNS. The administration of IFNgamma increased the number of EYFP(+)bDC but did not recruit peripheral DC into the CNS. IFNgamma, but not IL-4, upregulated the expression levels of major histocompatibility class II (MHC-II). In addition, IFNgamma-activated EYFP(+)bDC induced antigen-specific naïve CD4 T cells to proliferate and secrete Th1/Th17 cytokines. Activated bDC were also able to stimulate naïve CD8 T cells. Collectively, these data reveal the Th1 cytokine IFNgamma, but not the Th2 cytokine IL4, induces bDC to up-regulate MHC-II and become competent APC.


Subject(s)
Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Brain/cytology , Dendritic Cells/immunology , Interferon-gamma/pharmacology , Animals , Bacterial Proteins/metabolism , CD11c Antigen/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Movement/drug effects , Dendritic Cells/cytology , Dendritic Cells/drug effects , Epitopes/drug effects , Histocompatibility Antigens Class II/immunology , Interferon-gamma/administration & dosage , Interleukin-4/pharmacology , Luminescent Proteins/metabolism , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Radiation Tolerance/drug effects , Receptors, CCR7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL