Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters

Publication year range
1.
Anal Chem ; 96(26): 10551-10558, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38888386

ABSTRACT

Drying oils such as linseed oil form a polymer network through a complex free-radical polymerization process. We have studied polymerization in this challenging class of polymers using a quartz crystal microbalance (QCM). The QCM is able to measure the evolution of polymer mass and mechanical properties as the oil transitions from a liquid-like to a solid-like state. Measurements using bulk materials and thin films provide information about the initial polymerization phase as well as the evolution of the mass and mechanical properties over the first two years of cure. The temperature-dependent response of the cured linseed oil films was also measured. These results were combined with previously published results obtained from traditional dynamic mechanical analysis to give a unified picture of the properties of these materials across a very broad temperature range.

2.
J Chem Inf Model ; 61(3): 1457-1469, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33615781

ABSTRACT

The autoxidation of triglyceride (or triacylglycerol, TAG) is a poorly understood complex system. It is known from mass spectrometry measurements that, although initiated by a single molecule, this system involves an abundance of intermediate species and a complex network of reactions. For this reason, the attribution of the mass peaks to exact molecular structures is difficult without additional information about the system. We provide such information using a graph theory-based algorithm. Our algorithm performs an automatic discovery of the chemical reaction network that is responsible for the complexity of the mass spectra in drying oils. This knowledge is then applied to match experimentally measured mass spectra with computationally predicted molecular graphs. We demonstrate this methodology on the autoxidation of triolein as measured by electrospray ionization-mass spectrometry (ESI-MS). Our protocol can be readily applied to investigate other oils and their mixtures.


Subject(s)
Oils , Spectrometry, Mass, Electrospray Ionization , Algorithms , Oxidation-Reduction , Triglycerides
3.
Soft Matter ; 14(17): 3404-3414, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29667682

ABSTRACT

In the printing, coating and ink industries, photocurable systems are becoming increasingly popular and multi-functional acrylates are one of the most commonly used monomers due to their high reactivity (fast curing). In this paper, we use molecular dynamics and graph theory tools to investigate the thermo-mechanical properties and topology of hexanediol diacrylate (HDDA) polymer networks. The gel point was determined as the point where a giant component was formed. For the conditions of our simulations, we found the gel point to be around 0.18 bond conversion. A detailed analysis of the network topology showed, unexpectedly, that the flexibility of the HDDA molecules plays an important role in increasing the conversion of double bonds, while delaying the gel point. This is due to a back-biting type of reaction mechanism that promotes the formation of small cycles. The glass transition temperature for several degrees of curing was obtained from the change in the thermal expansion coefficient. For a bond conversion close to experimental values we obtained a glass transition temperature around 400 K. For the same bond conversion we estimate a Young's modulus of 3 GPa. Both of these values are in good agreement with experiments.

4.
Phys Chem Chem Phys ; 18(16): 10896-905, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27039879

ABSTRACT

The formation and crystallization of metal soaps in oil paint layers is an important issue in the conservation of oil paintings. The chemical reactions and physical processes that are involved in releasing metal ions from pigments and fatty acids from the oil binder to form crystalline metal soap deposits have so far remained poorly understood. We have used a combination of differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) on model mixtures of palmitic acid, lead palmitate or zinc palmitate and linseed oil to study the transition from amorphous material to crystalline fatty acid or metal soap. This transition forms the final stage in the cascade of processes leading to metal soap-related oil paint degradation. Palmitic acid as well as the metal soaps showed nearly ideal solubility behavior. However, it was found that, near room temperature, both lead and zinc palmitate are practically insoluble in both liquid and partially polymerized linseed oil. Interestingly, the rate of metal soap and fatty acid crystallization decreased rapidly with the degree of linseed oil polymerization, possibly leading to systems where metal soaps are kinetically trapped in a semi-crystalline state. To explain the various morphologies of metal soap aggregates observed in oil paint layers, it is proposed that factors affecting the probability of crystal nucleation and the rate of crystal growth play a crucial role, like exposure to heat or cleaning solvents and the presence of microcracks.

5.
Phys Rev E ; 101(1-1): 012303, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069527

ABSTRACT

In every network, a distance between a pair of nodes can be defined as the length of the shortest path connecting these nodes, and therefore one may speak of a ball, its volume, and how it grows as a function of the radius. Spatial networks tend to feature peculiar volume scaling functions, as well as other topological features, including clustering, degree-degree correlation, clique complexes, and heterogeneity. Here we investigate a nongeometric random graph with a given degree distribution and an additional constraint on the volume scaling function. We show that such structures fall into the category of m-colored random graphs and study the percolation transition by using this theory. We prove that for a given degree distribution the percolation threshold for weakly connected components is not affected by the volume growth function. Additionally, we show that the size of the giant component and the cyclomatic number are not affected by volume scaling. These findings may explain the surprisingly good performance of network models that neglect volume scaling. Even though this paper focuses on the implications of the volume growth, the model is generic and might lead to insights in the field of random directed acyclic graphs and their applications.

6.
Sci Rep ; 10(1): 14627, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32884043

ABSTRACT

Step-growth and chain-growth are two major families of chemical reactions that result in polymer networks with drastically different physical properties, often referred to as hyper-branched and cross-linked networks. In contrast to step-growth polymerisation, chain-growth forms networks that are history-dependent. Such networks are defined not just by the degree distribution, but also by their entire formation history, which entails a modelling and conceptual challenges. We show that the structure of chain-growth polymer networks corresponds to an edge-coloured random graph with a defined multivariate degree distribution, where the colour labels represent the formation times of chemical bonds. The theory quantifies and explains the gelation in free-radical polymerisation of cross-linked polymers and predicts conditions when history dependance has the most significant effect on the global properties of a polymer network. As such, the edge colouring is identified as the key driver behind the difference in the physical properties of step-growth and chain-growth networks. We expect that this findings will stimulate usage of network science tools for discovery and design of cross-linked polymers.

7.
Sci Rep ; 10(1): 10574, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32601362

ABSTRACT

The exposure of oil paintings to organic solvents for varnish removal or to water for the removal of surface dirt can affect the chemical and physical properties of oil paint in an undesired way. Solvents can temporarily plasticise and swell the polymerised oil paint binding medium, enhancing both the thermal mobility and mechanical displacement of pigments embedded in this film. The enhancement of these microscopic motions can affect both the chemical and physical stability of the object as a whole. In order to minimise solvent exposure during cleaning, an analytical method that can quantitatively measure the microscopic motions induced by solvent uptake, is required first. In this study, we use Fourier Transform Laser Speckle Imaging (FT-LSI) and a newly developed portable FT-LSI setup as highly resolved motion detection instruments. We employ FT-LSI to probe pigment motion, with high spatiotemporal resolution, as a proxy for the destabilising effects of cleaning solvents. In this way, we can study solvent diffusion and evaporation rates and the total solvent retention time. In addition, qualitative spatial information on the spreading and homogeneity of the applied solvent is obtained. We study mobility in paint films caused by air humidity, spreading of solvents as a result of several cleaning methods and the protective capabilities of varnish. Our results show that FT-LSI is a powerful technique for the study of solvent penetration during oil paint cleaning and has a high potential for future use in the conservation studio.

8.
Sci Adv ; 6(18): eaay8782, 2020 May.
Article in English | MEDLINE | ID: mdl-32494666

ABSTRACT

Ultramarine blue pigment, one of the most valued natural artist's pigments, historically was prepared from lapis lazuli rock following various treatments; however, little is understood about why or how to distinguish such a posteriori on paintings. X-ray absorption near-edge structure spectroscopy at the sulfur K-edge in microbeam and full-field modes (analyzed with nonnegative matrix factorization) is used to monitor the changes in the sulfur species within lazurite following one such historically relevant treatment: heating of lapis lazuli before extracting lazurite. Sulfur signatures in lazurite show dependence on the heat treatment of lapis lazuli from which it is derived. Peaks attributed to contributions from the trisulfur radical-responsible for the blue color of lazurite-increase in relative intensity with heat treatment paralleled by an intensified blue hue. Matching spectra were identified on lazurite particles from five historical paint samples, providing a marker for artists' pigments that had been extracted from heat-treated lapis lazuli.

9.
Sci Rep ; 9(1): 2276, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783151

ABSTRACT

Many research fields, reaching from social networks and epidemiology to biology and physics, have experienced great advance from recent developments in random graphs and network theory. In this paper we propose a generic model of step-growth polymerisation as a promising application of the percolation on a directed random graph. This polymerisation process is used to manufacture a broad range of polymeric materials, including: polyesters, polyurethanes, polyamides, and many others. We link features of step-growth polymerisation to the properties of the directed configuration model. In this way, we obtain new analytical expressions describing the polymeric microstructure and compare them to data from experiments and computer simulations. The molecular weight distribution is related to the sizes of connected components, gelation to the emergence of the giant component, and the molecular gyration radii to the Wiener index of these components. A model on this level of generality is instrumental in accelerating the design of new materials and optimizing their properties, as well as it provides a vital link between network science and experimentally observable physics of polymers.

10.
RSC Adv ; 9(61): 35559-35564, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-35528099

ABSTRACT

Although the concentration of carboxylic acid (COOH) groups is crucial to understand oil paint chemistry, analytical challenges hindered COOH quantification in complex polymerised oil samples thus far. The concentration of COOH groups is important in understanding oil paint degradation because it drives the breakdown of reactive inorganic pigments to dissolve in the oil network and form metal carboxylates. The metal ions in such an ionomeric polymer network can exchange with saturated fatty acids to form crystalline metal soaps (metal complexes of saturated fatty acids), leading to serious problems in many paintings worldwide. We developed two methods based on ATR-FTIR spectroscopy to accurately estimate the COOH concentration in artificially aged oil paint models. Using tailored model systems composed of linseed oil, ZnO and inert filler pigments, these dried oil paints were found to contain one COOH group per triacylglycerol unit. Model systems based on a mixture of long chain alcohols showed that the calculated COOH concentration originates from side chain autoxidation at low relative humidity (RH). The influence of increasing RH and ZnO concentration on COOH formation was studied and high relative humidity conditions were shown to promote the formation of COOH groups. No significant ester hydrolysis was found under the conditions studied. Our results show the potential of quantitative analysis of oil paint model systems for aiding careful (re)evaluation of conservation strategies.

11.
Sci Adv ; 5(6): eaaw3592, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31245541

ABSTRACT

The molecular structure around metal ions in polymer materials has puzzled researchers for decades. This question has acquired new relevance with the discovery that aged oil paint binders can adopt an ionomer structure when metal ions leached from pigments bind to carboxylate groups on the polymerized oil network. The characteristics of the metal-polymer structure are expected to have important consequences for the rate of oil paint degradation reactions such as metal soap formation and oil hydrolysis. Here, we use two-dimensional infrared (2D-IR) spectroscopy to demonstrate that zinc carboxylates formed in paint films containing zinc white pigment adopt either a coordination chain- or an oxo-type cluster structure. Moreover, it was found that the presence of water governs the relative concentration of these two types of zinc carboxylate coordination. The results pave the way for a molecular approach to paintings conservation and the application of 2D-IR spectroscopy to the study of polymer structure.

12.
Macromolecules ; 51(18): 7134-7144, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30270940

ABSTRACT

In the restoration of paintings, solvent diffusion and swelling of polymeric oil paint binding media are important factors to consider. Common cleaning methods with organic solvents or aqueous solutions could lead to undesirable physicochemical changes in the paint in the long term, though the extent of this effect is not yet clear. We used tailored nonporous model systems for aged oil paint to measure paint swelling and solvent diffusion for a wide range of relevant solvents. Using dynamic mechanical analysis (DMA), the glass transition temperature of our model systems was found to be close to room temperature. Subsequently, with a custom sample cell and time-dependent attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, we were able to accurately track swelling and diffusion processes in the polymer films. To quantify the spectroscopic data, we developed a model that completely describes the solvent migration process, including significant film swelling and non-Fickian solvent diffusion. The relation between solvent properties, the diffusion coefficient, and the swelling capacity proved to be rather complex and could not be explained using a single solvent parameter. However, it was found that strongly swelling solvents generally diffuse faster than weakly swelling solvents and that pigmentation does not significantly influence solvent diffusion. These results contribute to a better understanding of transport phenomena in paintings and support the development of improved paint restoration strategies.

13.
Macromolecules ; 51(18): 7419, 2018 09 25.
Article in English | MEDLINE | ID: mdl-31186587

ABSTRACT

[This corrects the article DOI: 10.1021/acs.macromol.8b00890.].

14.
Appl Spectrosc ; 71(12): 2699-2706, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28741404

ABSTRACT

The curing characteristics of an ultraviolet (UV) ink layer are of utmost importance for the development of UV inks. Measuring either bulk or bottom cure in itself is not new and has been the subject of many articles. In this article, two methods are described based on Fourier transform infrared (FT-IR) spectrometry to measure in real time and simultaneously the bulk and bottom cure of a thin UV ink layer. The procedure consists of applying a thin (10-12 µm) layer of UV-curing ink on an attenuated total reflection (ATR) crystal. The bottom cure is measured with ATR. The bulk cure is measured simultaneously with a reflection analysis (method 1) or a transmission analysis (method 2). With both methods, the bulk and bottom cure can be determined. To overcome problems with the interference in the ATR reflection setup, it is recommended to use the ATR transmission setup.

SELECTION OF CITATIONS
SEARCH DETAIL