Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Sensors (Basel) ; 22(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36236395

ABSTRACT

Driving is a ubiquitous activity that requires both motor skills and cognitive focus. These aspects become more problematic for some seniors, who have underlining medical conditions and tend to lose some of these capabilities. Therefore, driving can be used as a controlled environment for the frequent, non-intrusive monitoring of bio-physical and cognitive status within drivers. Such information can then be utilized for enhanced assistive vehicle controls and/or driver health monitoring. In this paper, we present a novel multi-modal smart steering sleeve (S3) system with an integrated sensing platform that can non-intrusively and continuously measure a driver's physiological signals, including electrodermal activity (EDA), electromyography (EMG), and hand pressure. The sensor suite was developed by combining low-cost interdigitated electrodes with a piezoresistive force sensor on a single, flexible polymer substrate. Comprehensive characterizations on the sensing modalities were performed with promising results demonstrated. The sweat-sensing unit (SSU) for EDA monitoring works under a 100 Hz alternative current (AC) source. The EMG signal acquired by the EMG-sensing unit (EMGSU) was amplified to within 5 V. The force-sensing unit (FSU) for hand pressure detection has a range of 25 N. This flexible sensor was mounted on an off-the-shelf steering wheel sleeve, making it an add-on system that can be installed on any existing vehicles for convenient and wide-coverage driver monitoring. A cloud-based communication scheme was developed for the ease of data collection and analysis. Sensing platform development, performance, and limitations, as well as other potential applications, are discussed in detail in this paper.


Subject(s)
Automobile Driving , Automobile Driving/psychology , Data Collection , Monitoring, Physiologic , Sweat
2.
J Cutan Pathol ; 48(1): 53-65, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32989842

ABSTRACT

BACKGROUND: Accurate basal cell carcinoma (BCC) subtyping is requisite for appropriate management, but non-representative sampling occurs in 18% to 25% of biopsies. By enabling non-invasive diagnosis and more comprehensive sampling, integrated reflectance confocal microscopy-optical coherence tomography (RCM-OCT) may improve the accuracy of BCC subtyping and subsequent management. We evaluated RCM-OCT images and histopathology slides for the presence of two key features, angulation and small nests and cords, and calculated (a) sensitivity and specificity of these features, combined and individually, for identifying an infiltrative BCC subtype and (b) agreement across modalities. METHODS: Thirty-three RCM-OCT-imaged, histopathologically-proven BCCs (17 superficial and/or nodular; 16 containing an infiltrative component) were evaluated. RESULTS: The presence of angulation or small nests and cords was sufficient to identify infiltrative BCC on RCM-OCT with 100% sensitivity and 82% specificity, similar to histopathology (100% sensitivity, 88% specificity, kappa = 0.82). When both features were present, the sensitivity for identifying infiltrative BCC was 100% using either modality and specificity was 88% on RCM-OCT vs 94% on histopathology, indicating near-perfect agreement between non-invasive and invasive diagnostic modalities (kappa = 0.94). CONCLUSIONS: RCM-OCT can non-invasively identify key histopathologic features of infiltrative BCC offering a possible alternative to traditional invasive biopsy.


Subject(s)
Carcinoma, Basal Cell/diagnostic imaging , Microscopy, Confocal/methods , Skin Neoplasms/diagnostic imaging , Tomography, Optical Coherence/methods , Adult , Aged , Aged, 80 and over , Carcinoma, Basal Cell/pathology , Female , Humans , Male , Middle Aged , Sensitivity and Specificity , Skin Neoplasms/pathology
3.
Opt Lett ; 45(4): 909-912, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32058502

ABSTRACT

In this Letter, we report a low-cost, portable, two-photon excitation fluorescence microscopy imager that uses a fiber-based approach for both femtosecond supercontinuum (SC) generation and light delivery to the optical head. The SC generation is based on a tapered polarization-maintaining photonic crystal fiber that uses pre-chirped femtosecond narrowband pulses to generate a coherent SC spectrum with a bandwidth of approximately 300 nm. Using this approach, high-power, near-transform-limited, wavelength-selectable SC pulses are generated and directly delivered to the imaging optical head. Preliminary testing of this imager on brain slices is presented, demonstrating a high signal-to-noise ratio and sub-cellular imaging capabilities to a depth of approximately 200 µm. These results demonstrate the suitability of the technology for ex vivo and potentially in vivo cellular-level biomedical imaging applications.


Subject(s)
Light , Microscopy, Fluorescence, Multiphoton/instrumentation , Optical Fibers , Optical Phenomena , Equipment Design , Nonlinear Dynamics
6.
Opt Lett ; 39(24): 6807-10, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25503002

ABSTRACT

We present a new method for generating micron-scale OCT images of interstitial tissue with a hand scanning probe and a linear optical encoder that senses probe movement relative to a fixed reference point, i.e., tissue surface. Based on this approach, we demonstrate high resolution optical imaging of biological tissues through a very long biopsy needle. Minor artifacts caused by tissue noncompliance are corrected using a software algorithm which detects the simple repetition of the adjacent A-scans. This hand-scanning OCT imaging approach offers the physician the freedom to access imaging sites of interest repeatedly.


Subject(s)
Feedback , Tomography, Optical Coherence/instrumentation , Algorithms , Animals , Image Processing, Computer-Assisted
7.
Diagnostics (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928659

ABSTRACT

This paper presents a combined optical coherence tomography (OCT) imaging/machine learning (ML) technique for real-time analysis of lung tissue morphology to determine the presence and level of invasiveness of idiopathic lung fibrosis (ILF). This is an important clinical problem as misdiagnosis is common, resulting in patient exposure to costly and invasive procedures and substantial use of healthcare resources. Therefore, biopsy is needed to confirm or rule out radiological findings. Videoscopic-assisted thoracoscopic wedge biopsy (VATS) under general anesthesia is typically necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves the placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and the pattern of fibrosis. However, VATS pulmonary biopsy can have multiple side effects, including inflammation, tissue morbidity, and severe bleeding, which further degrade the quality of life for the patient. Furthermore, the results are not immediately available, requiring tissue processing and analysis. Here, we report an initial attempt of using ML-assisted polarization sensitive OCT (PS-OCT) imaging for lung fibrosis assessment. This approach has been preliminarily tested on a rat model of lung fibrosis. Our preliminary results show that ML-assisted PS-OCT imaging can detect the presence of ILF with an average of 77% accuracy and 89% specificity.

8.
Diagnostics (Basel) ; 14(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38248061

ABSTRACT

The cellular-level visualization of retinal microstructures such as blood vessel wall components, not available with other imaging modalities, is provided with unprecedented details by dark-field imaging configurations; however, the interpretation of such images alone is sometimes difficult since multiple structural disturbances may be present in the same time. Particularly in eyes with retinal pathology, microstructures may appear in high-resolution retinal images with a wide range of sizes, sharpnesses, and brightnesses. In this paper we show that motion contrast and phase gradient imaging modalities, as well as the simultaneous acquisition of depth-resolved optical coherence tomography (OCT) images, provide additional insight to help understand the retinal neural and vascular structures seen in dark-field images and may enable improved diagnostic and treatment plans.

9.
Opt Lett ; 38(22): 4558-61, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24322073

ABSTRACT

We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.


Subject(s)
Microscopy/instrumentation , Molecular Imaging/instrumentation , Rheology/instrumentation , Tomography, Optical Coherence/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Microspheres
10.
Diagnostics (Basel) ; 13(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37998535

ABSTRACT

Diseases such as diabetes affect the retinal vasculature and the health of the neural retina, leading to vision problems. We describe here an imaging method and analysis procedure that enables characterization of the retinal vessel walls with cellular-level resolution, potentially providing markers for eye diseases. Adaptive optics scanning laser ophthalmoscopy is used with a modified detection scheme to include four simultaneous offset aperture channels. The magnitude of the phase gradient derived from these offset images is used to visualize the structural characteristics of the vessels. The average standard deviation image provides motion contrast and enables segmentation of the vessel lumen. Segmentation of blood vessel walls provides quantitative measures of geometrical characteristics of the vessel walls, including vessel and lumen diameters, wall thickness, and wall-to-lumen ratio. Retinal diseases may affect the structural integrity of the vessel walls, their elasticity, their permeability, and their geometrical characteristics. The ability to measure these changes is valuable for understanding the vascular effects of retinal diseases, monitoring disease progression, and drug testing. In addition, loss of structural integrity of the blood vessel wall may result in microaneurysms, a hallmark lesion of diabetic retinopathy, which may rupture or leak and further create vision impairment. Early identification of such structural abnormalities may open new treatment avenues for disease management and vision preservation. Functional testing of retinal circuitry through high-resolution measurement of vasodilation as a response to controlled light stimulation of the retina (neurovascular coupling) is another application of our method and can provide an unbiased evaluation of one's vision and enable early detection of retinal diseases and monitoring treatment results.

11.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37443679

ABSTRACT

Adaptive optics provides improved resolution in ophthalmic imaging when retinal microstructures need to be identified, counted, and mapped. In general, multiple images are averaged to improve the signal-to-noise ratio or analyzed for temporal dynamics. Image registration by cross-correlation is straightforward for small patches; however, larger images require more sophisticated registration techniques. Strip-based registration has been used successfully for photoreceptor mosaic alignment in small patches; however, if the deformations along strips are not simple displacements, averaging can degrade the final image. We have applied a non-rigid registration technique that improves the quality of processed images for mapping cones over large image patches. In this approach, correction of local deformations compensates for local image stretching, compressing, bending, and twisting due to a number of causes. The main result of this procedure is improved definition of retinal microstructures that can be better identified and segmented. Derived metrics such as cone density, wall-to-lumen ratio, and quantification of structural modification of blood vessel walls have diagnostic value in many retinal diseases, including diabetic retinopathy and age-related macular degeneration, and their improved evaluations may facilitate early diagnostics of retinal diseases.

12.
IEEE Trans Med Robot Bionics ; 5(2): 335-342, 2023 May.
Article in English | MEDLINE | ID: mdl-37312886

ABSTRACT

MR-guided focal cryoablation of prostate cancer has often been selected as a minimally-invasive treatment option. Placing multiple cryo-needles accurately to form an ablation volume that adequately covers the target volume is crucial for better oncological/functional outcomes. This paper presents an MRI-compatible system combining a motorized tilting grid template with insertion depth sensing capabilities, enabling the physician to precisely place the cryo-needles into the desired location. In vivo animal study in a swine model (3 animals) was performed to test the device performance including targeting accuracy and the procedure workflow. The study showed that the insertion depth feedback improved the 3D targeting accuracy when compared to the conventional insertion technique (7.4 mm vs. 11.2 mm, p=0.04). All three cases achieved full iceball coverage without repositioning the cryo-needles. The results demonstrate the advantages of the motorized tilting mechanism and real-time insertion depth feedback, as well as the feasibility of the proposed workflow for MRI-guided focal cryoablation of prostate cancer.

13.
Diagnostics (Basel) ; 13(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37443670

ABSTRACT

This paper presents a combined optical imaging/artificial intelligence (OI/AI) technique for the real-time analysis of tissue morphology at the tip of the biopsy needle, prior to collecting a biopsy specimen. This is an important clinical problem as up to 40% of collected biopsy cores provide low diagnostic value due to high adipose or necrotic content. Micron-scale-resolution optical coherence tomography (OCT) images can be collected with a minimally invasive needle probe and automatically analyzed using a computer neural network (CNN)-based AI software. The results can be conveyed to the clinician in real time and used to select the biopsy location more adequately. This technology was evaluated on a rabbit model of cancer. OCT images were collected with a hand-held custom-made OCT probe. Annotated OCT images were used as ground truth for AI algorithm training. The overall performance of the AI model was very close to that of the humans performing the same classification tasks. Specifically, tissue segmentation was excellent (~99% accuracy) and provided segmentation that closely mimicked the ground truth provided by the human annotations, while over 84% correlation accuracy was obtained for tumor and non-tumor classification.

14.
J Opt Soc Am A Opt Image Sci Vis ; 29(12): 2598-607, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23455909

ABSTRACT

Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are complementary imaging modalities, the combination of which can provide clinicians with a wealth of information to detect retinal diseases, monitor disease progression, or assess new therapies. Adaptive optics (AO) is a tool that enables correction of wavefront distortions from ocular aberrations. We have developed a multimodal adaptive optics system (MAOS) for high-resolution multifunctional use in a variety of research and clinical applications. The system integrates both OCT and SLO imaging channels into an AO beam path. The optics and hardware were designed with specific features for simultaneous SLO/OCT output, for high-fidelity AO correction, for use in humans, primates, and small animals, and for efficient location and orientation of retinal regions of interest. The MAOS system was tested on human subjects and rodents. The design, performance characterization, and initial representative results from the human and animal studies are presented and discussed.


Subject(s)
Ophthalmoscopes , Retina/cytology , Tomography, Optical Coherence/instrumentation , Adult , Animals , Equipment Design , Humans , Lasers , Rats , Rats, Sprague-Dawley
15.
J Periodontol ; 93(12): 1929-1939, 2022 12.
Article in English | MEDLINE | ID: mdl-35357007

ABSTRACT

BACKGROUND: Our objective was to develop and test a combined Raman microspectroscopy (RMS) and micro-optical coherence tomography (µOCT) approach for chairside quantification of gingival collagen, DNA, epithelium, and connective tissue. We hypothesized that a high-resolution RMS/µOCT can characterize healthy and inflamed periodontal tissues for diagnosis and disease activity monitoring. METHODS: A prototype instrument was developed, tested ex vivo on gingival specimens and optimized for in vivo intraoral use. The primary outcome measures were the ratios of oral epithelium to connective tissue thickness (OE:CT) and the amount of DNA to collagen type I (DNA/Col 1), and the thickness of sulcular epithelium (SE). For ex vivo testing, eight subjects with healthy periodontal tissues or with Stage II to IV periodontitis were included in the study and underwent crown-lengthening or periodontal surgical procedures, respectively. Gingival biopsies were scanned by RMS/µOCT and histometric analyses were performed. The proof-of-concept study included OE/CT, DNA/Col 1, and SE assessed in six volunteers with or without signs of gingival inflammation (n = 3/group). RESULTS: The spatially co-registered RMS spectra revealed opposing changes in the collagen and DNA peaks of inflamed compared with healthy tissues (P <0.05). Combined RMS/µOCT analysis showed that OE/CT, DNA/Col, and SE are significantly different between healthy and inflamed sites (P <0.05). Histological assessments confirmed the differences detected by RMS/µOCT. Qualitative analysis of DNA/Col 1 ratios indicated Col I content as the main distinguishing feature for health and DNA content for periodontitis. CONCLUSION: Results suggest that combined RMS/µOCT chairside imaging may distinguish between healthy and diseased sites by evaluating marginal periodontal morphological and biochemical features.


Subject(s)
Periodontitis , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Pilot Projects , Gingiva/diagnostic imaging , Gingiva/pathology , Periodontitis/pathology , Periodontium/diagnostic imaging , Periodontium/pathology
16.
Transl Biophotonics ; 4(3)2022 Aug.
Article in English | MEDLINE | ID: mdl-36176918

ABSTRACT

Noninvasive assessment of skin lesions, especially of basal cell carcinoma (BCC), has benefited more recently from the use of optical imaging techniques such as optical coherence tomography (OCT) and reflectance confocal microscopy (RCM). While RCM provides submicron scale resolution and thus enables identification of skin morphological changes of the skin, with the downside of limited penetration depth, OCT imaging of the same lesion brings the benefit of better resolving its depth of invasion. OCT and RCM can be used either individually or combined within the same instrument for the noninvasive diagnosis of nonmelanoma skin cancers (NMSCs). Their combined use has shown to provide certain benefits such as better characterization of the lesion's margins, both in depth and laterally, as well as improved sensitivity and specificity, as previously demonstrated by our team. In this paper we report a new "fiber-based" implementation of the second-generation RCM-OCT hand-held probe. The fiber-based implementation of both imaging modalities enabled the construction of a smaller footprint/lower weight hand-held probe. Its preliminary evaluation on the skin of healthy volunteers is reported here, demonstrating improved capabilities for resolving sub-cellular structures and image skin morphology with micron-scale resolution to a higher depth than in the previous implementation, while also enabling the construction of angiography maps showing vascular remodeling.

17.
Med Phys ; 48(5): 2553-2565, 2021 May.
Article in English | MEDLINE | ID: mdl-33651407

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI)-guided transperineal prostate biopsy has been practiced since the early 2000s. The technique often suffers from targeting error due to deviation of the needle as a result of physical interaction between the needle and inhomogeneous tissues. Existing needle guide devices, such as a grid template, do not allow choosing an alternative insertion path to mitigate the deviation because of their limited degree-of-freedom (DoF). This study evaluates how an angulated needle insertion path can reduce needle deviation and improve needle placement accuracy. METHODS: We extended a robotic needle-guidance device (Smart Template) for in-bore MRI-guided transperineal prostate biopsy. The new Smart Template has a 4-DoF needle-guiding mechanism allowing a translational range of motion of 65 and 58 mm along the vertical and horizontal axis, and a needle rotational motion around the vertical and horizontal axis ± 30 ∘ and a vertical rotational range of - 30 ∘ , + 10 ∘ , respectively. We defined a path planning strategy, which chooses between straight and angulated insertion paths depending on the anatomical structures on the potential insertion path. We performed (a) a set of experiments to evaluate the device positioning accuracy outside the MR-bore, and (b) an in vivo experiment to evaluate the improvement of targeting accuracy combining straight and angulated insertions in animal models (swine, n = 3 ). RESULTS: We analyzed 46 in vivo insertions using either straight or angulated insertions paths. The experiment showed that the proposed strategy of selecting straight or angulated insertions based on the subject's anatomy outperformed the conventional approach of just straight insertions in terms of targeting accuracy (2.4 mm [1.3-3.7] vs 3.9 mm [2.4-5.0] {Median IQR } ); p = 0.041 after the bias correction). CONCLUSION: The in vivo experiment successfully demonstrated that an angulated needle insertion path could improve needle placement accuracy with a path planning strategy that takes account of the subject-specific anatomical structures.


Subject(s)
Prostatic Neoplasms , Robotics , Animals , Humans , Image-Guided Biopsy , Magnetic Resonance Imaging , Male , Needles , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Swine
18.
IEEE Trans Biomed Eng ; 68(8): 2360-2367, 2021 08.
Article in English | MEDLINE | ID: mdl-33175676

ABSTRACT

Quantitative methods for assessing the severity of inhalation (burn) injury are needed to aid in treatment decisions. We hypothesize that it is possible to assess the severity of injuries on the basis of differences in the compliance of the airway wall. Here, we demonstrate the use of a custom-built, endoscopic, anatomic optical coherence elastography (aOCE) system to measure airway wall compliance. The method was first validated using airway phantoms, then performed on ex vivo porcine tracheas under varying degrees of inhalation (steam) injury. A negative correlation between aOCE-derived compliance and severity of steam injuries is found, and spatially-resolved compliance maps reveal regional heterogeneity in airway properties.


Subject(s)
Burns , Elasticity Imaging Techniques , Lung Diseases , Animals , Swine , Tomography, Optical Coherence , Trachea
19.
PLoS One ; 16(2): e0245334, 2021.
Article in English | MEDLINE | ID: mdl-33571221

ABSTRACT

Providing surgical margin information during breast cancer surgery is crucial for the success of the procedure. The margin is defined as the distance from the tumor to the cut surface of the resection specimen. The consensus among surgeons and radiation oncologists is that there should be no tumor left within 1 to maximum 2 mm from the surface of the surgical specimen. If a positive margin remains, there is substantial risk for tumor recurrence, which may also result in potentially reduced cosmesis and eventual need for mastectomy. In this paper we report a novel multimodal optical imaging instrument based on combined high-resolution confocal microscopy-optical coherence tomography imaging for assessing the presence of potential positive margins on surgical specimens. Since rapid specimen analysis is critical during surgery, this instrument also includes a fluorescence imaging channel to enable rapid identification of the areas of the specimen that have potential positive margins. This is possible by specimen incubation with a cancer specific agent prior to imaging. In this study we used a quenched contrast agent, which is activated by cancer specific enzymes, such as urokinase plasminogen activators (uPA). Using this agent or a similar one, one may limit the use of high-resolution optical imaging to only fluorescence-highlighted areas for visualizing tissue morphology at the sub-cellular scale and confirming or ruling out cancer presence. Preliminary evaluation of this technology was performed on 20 surgical specimens and testing of the optical imaging findings was performed against histopathology. The combination of the three imaging modes allowed for high correlation between optical image analysis and histological ground-truth. The initial results are encouraging, showing instrument capability to assess margins on clinical specimens with a positive predictive value of 1.0 and a negative predictive value of 0.83.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted/methods , Margins of Excision , Microscopy, Confocal , Optical Imaging , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Feasibility Studies , Female , Humans , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Optical Imaging/instrumentation , Optical Imaging/methods
20.
Opt Express ; 18(11): 11607-21, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20589021

ABSTRACT

We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.


Subject(s)
Lenses , Ophthalmoscopes , Tomography, Optical Coherence/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Microscopy, Confocal , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL