Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Cell Mol Life Sci ; 80(8): 202, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37442828

ABSTRACT

The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.


Subject(s)
Epidermal Growth Factor , Neoplasms , Humans , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Calcium , Signal Transduction , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Line, Tumor , Cell Movement
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37047338

ABSTRACT

The σ1 receptor (σ1-R) is an enigmatic endoplasmic reticulum resident transmembrane protein implicated in a variety of central nervous system disorders and whose agonists have neuroprotective activity. In spite of σ1-R's physio-pathological and pharmacological importance, two of the most important features required to fully understand σ1-R function, namely the receptor endogenous ligand(s) and the molecular mechanism of ligand access to the binding site, have not yet been unequivocally determined. In this work, we performed molecular dynamics (MD) simulations to help clarify the potential route of access of ligand(s) to the σ1-R binding site, on which discordant results had been reported in the literature. Further, we combined computational and experimental procedures (i.e., virtual screening (VS), electron density map fitting and fluorescence titration experiments) to provide indications about the nature of σ1-R endogenous ligand(s). Our MD simulations on human σ1-R suggested that ligands access the binding site through a cavity that opens on the protein surface in contact with the membrane, in agreement with previous experimental studies on σ1-R from Xenopus laevis. Additionally, steroids were found to be among the preferred σ1-R ligands predicted by VS, and 16,17-didehydroprogesterone was shown by fluorescence titration to bind human σ1-R, with significantly higher affinity than the prototypic σ1-R ligand pridopidine in the same essay. These results support the hypothesis that steroids are among the most important physiological σ1-R ligands.


Subject(s)
Molecular Dynamics Simulation , Receptors, sigma , Humans , Binding Sites , Ligands , Protein Binding , Receptors, sigma/metabolism , Steroids , Sigma-1 Receptor
3.
Molecules ; 28(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36615531

ABSTRACT

BACKGROUND: As a result of the paucity of treatment, Leishmaniasis continues to provoke about 60,000 deaths every year worldwide. New molecules are needed, and drug discovery research is oriented toward targeting proteins crucial for parasite survival. Among them, trypanothione reductase (TR) is of remarkable interest owing to its vital role in Leishmania species protozoan parasite life. Our previously identified compound 1 is a novel chemotype endowed with a unique mode of TR inhibition thanks to its binding to a formerly unknown but druggable site at the entrance of the NADPH binding cavity, absent in human glutathione reductase (hGR). METHODS: We designed and synthesized new 3-amino-1-arylpropan-1-one derivatives structurally related to compound 1 and evaluated their potential inhibition activity on TR from Leishmania infantum (LiTR). Cluster docking was performed to assess the binding poses of the compounds. RESULTS: The newly synthesized compounds were screened at a concentration of 100 µM in in vitro assays and all of them proved to be active with residual activity percentages lower than 75%. CONCLUSIONS: Compounds 2a and 2b were the most potent inhibitors found, suggesting that an additional aromatic ring might be promising for enzymatic inhibition. Further structure-activity relationships are needed to optimize our compounds activity.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Humans , NADP/metabolism , Models, Molecular , NADH, NADPH Oxidoreductases , Binding Sites , Antiprotozoal Agents/pharmacology
4.
J Biol Chem ; 296: 100795, 2021.
Article in English | MEDLINE | ID: mdl-34019876

ABSTRACT

Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a pivotal role in metabolism as an enzyme cofactor. PLP is a very reactive molecule and can be very toxic unless its intracellular concentration is finely regulated. In Escherichia coli, PLP formation is catalyzed by pyridoxine 5'-phosphate oxidase (PNPO), a homodimeric FMN-dependent enzyme that is responsible for the last step of PLP biosynthesis and is also involved in the PLP salvage pathway. We have recently observed that E. coli PNPO undergoes an allosteric feedback inhibition by PLP, caused by a strong allosteric coupling between PLP binding at the allosteric site and substrate binding at the active site. Here we report the crystallographic identification of the PLP allosteric site, located at the interface between the enzyme subunits and mainly circumscribed by three arginine residues (Arg23, Arg24, and Arg215) that form an "arginine cage" and efficiently trap PLP. The crystal structure of the PNPO-PLP complex, characterized by a marked structural asymmetry, presents only one PLP molecule bound at the allosteric site of one monomer and sheds light on the allosteric inhibition mechanism that makes the enzyme-substrate-PLP ternary complex catalytically incompetent. Site-directed mutagenesis studies focused on the arginine cage validate the identity of the allosteric site and provide an effective means to modulate the allosteric properties of the enzyme, from the loosening of the allosteric coupling (in the R23L/R24L and R23L/R215L variants) to the complete loss of allosteric properties (in the R23L/R24L/R21L variant).


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Pyridoxal Phosphate/metabolism , Pyridoxaminephosphate Oxidase/metabolism , Allosteric Site , Crystallography, X-Ray , Escherichia coli/chemistry , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , Pyridoxaminephosphate Oxidase/chemistry
5.
Drug Resist Updat ; 54: 100742, 2021 01.
Article in English | MEDLINE | ID: mdl-33429249

ABSTRACT

Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/physiology , Neoplasms/drug therapy , Taxoids/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Clinical Trials as Topic , Humans , Microtubules/drug effects , Mitosis/drug effects , Reactive Oxygen Species/metabolism , Taxoids/chemistry , Taxoids/pharmacokinetics
6.
Proteins ; 89(12): 1647-1672, 2021 12.
Article in English | MEDLINE | ID: mdl-34561912

ABSTRACT

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Subject(s)
Models, Molecular , Protein Conformation , Proteins/chemistry , Software , Amino Acid Sequence , Computational Biology , Cryoelectron Microscopy , Crystallography, X-Ray , Sequence Analysis, Protein
7.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525510

ABSTRACT

Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.


Subject(s)
Fibroblasts/cytology , Huntington Disease/metabolism , Pharmaceutical Preparations/chemistry , Receptors, sigma/metabolism , Adult , Cell Proliferation , Cells, Cultured , Computer Simulation , Databases, Pharmaceutical , Drug Evaluation, Preclinical , Drug Repositioning , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Huntington Disease/drug therapy , Male , Middle Aged , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Receptors, sigma/chemistry , Structure-Activity Relationship , Surface Plasmon Resonance , Sigma-1 Receptor
8.
Amino Acids ; 52(2): 247-259, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31037461

ABSTRACT

Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Leishmania infantum/drug effects , Sulfides/chemistry , Sulfides/pharmacology , Amino Acid Motifs , Catalytic Domain , Glutathione/analogs & derivatives , Glutathione/metabolism , Humans , Leishmania infantum/enzymology , Leishmania infantum/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Models, Molecular , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Spermidine/analogs & derivatives , Spermidine/metabolism
9.
Molecules ; 25(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326257

ABSTRACT

The protozoans Leishmania and Trypanosoma, belonging to the same Trypanosomatidae family, are the causative agents of Leishmaniasis, Chagas disease, and human African trypanosomiasis. Overall, these infections affect millions of people worldwide, posing a serious health issue as well as socio-economical concern. Current treatments are inadequate, mainly due to poor efficacy, toxicity, and emerging resistance; therefore, there is an urgent need for new drugs.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Drug Development , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/chemistry , Oxidation-Reduction/drug effects , Trypanosoma/drug effects , Trypanosoma/metabolism , Binding Sites , Drug Design , Drug Development/methods , Leishmania/drug effects , Leishmania/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Protein Multimerization , Structure-Activity Relationship , Substrate Specificity
10.
Mol Pharm ; 15(8): 3069-3078, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29897765

ABSTRACT

Leishmaniasis, Chagas disease, and sleeping sickness affect millions of people worldwide and lead to the death of about 50 000 humans per year. These diseases are caused by the kinetoplastids Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, respectively. These parasites share many general features, including gene conservation, high amino acid identity among proteins, the presence of subcellular structures as glycosomes and the kinetoplastid, and genome architecture, that may make drug development family specific, rather than species-specific, i.e., on the basis of the inhibition of a common, conserved parasite target. However, no optimal molecular targets or broad-spectrum drugs have been identified to date to cure these diseases. Here, the LeishBox from GlaxoSmithKline high-throughput screening, a 192-molecule set of best antileishmanial compounds, based on 1.8 million compounds, was used to identify specific inhibitors of a validated Leishmania target, trypanothione reductase (TR), while analyzing in parallel the homologous human enzyme glutathione reductase (GR). We identified three specific highly potent TR inhibitors and performed docking on the TR solved structure, thereby elucidating the putative molecular basis of TR inhibition. Since TRs from kinetoplastids are well conserved, and these compounds inhibit the growth of Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, the identification of a common validated target may lead to the development of potent antikinetoplastid drugs.


Subject(s)
Antiprotozoal Agents/pharmacology , Euglenozoa Infections/drug therapy , Kinetoplastida/drug effects , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Animals , Antiprotozoal Agents/therapeutic use , Drug Discovery/methods , Euglenozoa Infections/parasitology , High-Throughput Screening Assays/methods , Humans , Kinetoplastida/genetics , Kinetoplastida/metabolism , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/isolation & purification , NADH, NADPH Oxidoreductases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Small Molecule Libraries/pharmacology
11.
Drug Resist Updat ; 32: 23-46, 2017 05.
Article in English | MEDLINE | ID: mdl-29145976

ABSTRACT

The development of drug resistance continues to be a dominant hindrance toward curative cancer treatment. Overexpression of a wide-spectrum of ATP-dependent efflux pumps, and in particular of ABCB1 (P-glycoprotein or MDR1) is a well-known resistance mechanism for a plethora of cancer chemotherapeutics including for example taxenes, anthracyclines, Vinca alkaloids, and epipodopyllotoxins, demonstrated by a large array of published papers, both in tumor cell lines and in a variety of tumors, including various solid tumors and hematological malignancies. Upon repeated or even single dose treatment of cultured tumor cells or tumors in vivo with anti-tumor agents such as paclitaxel and doxorubicin, increased ABCB1 copy number has been demonstrated, resulting from chromosomal amplification events at 7q11.2-21 locus, leading to marked P-glycoprotein overexpression, and multidrug resistance (MDR). Clearly however, additional mechanisms such as single nucleotide polymorphisms (SNPs) and epigenetic modifications have shown a role in the overexpression of ABCB1 and of other MDR efflux pumps. However, notwithstanding the design of 4 generations of ABCB1 inhibitors and the wealth of information on the biochemistry and substrate specificity of ABC transporters, translation of this vast knowledge from the bench to the bedside has proven to be unexpectedly difficult. Many studies show that upon repeated treatment schedules of cell cultures or tumors with taxenes and anthracyclines as well as other chemotherapeutic drugs, amplification, and/or overexpression of a series of genes genomically surrounding the ABCB1 locus, is observed. Consequently, altered levels of other proteins may contribute to the establishment of the MDR phenotype, and lead to poor clinical outcome. Thus, the genes contained in this ABCB1 amplicon including ABCB4, SRI, DBF4, TMEM243, and RUNDC3B are overexpressed in many cancers, and especially in MDR tumors, while TP53TG1 and DMTF1 are bona fide tumor suppressors. This review describes the role of these genes in cancer and especially in the acquisition of MDR, elucidates possible connections in transcriptional regulation (co-amplification/repression) of genes belonging to the same ABCB1 amplicon region, and delineates their novel emerging contributions to tumor biology and possible strategies to overcome cancer MDR.


Subject(s)
Antineoplastic Agents/pharmacology , Chromosomes, Human, Pair 7/genetics , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Gene Amplification/genetics , Neoplasms/genetics , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Chromosomes, Human, Pair 7/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic/drug effects , Gene Amplification/drug effects , Gene Dosage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Polymorphism, Single Nucleotide , Treatment Outcome , Tumor Suppressor Proteins/genetics , Up-Regulation
12.
Biochim Biophys Acta ; 1860(3): 534-41, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26691136

ABSTRACT

BACKGROUND: Under conditions of Zn(II) deficiency, the most relevant high affinity Zn(II) transport system synthesized by many Gram-negative bacteria is the ZnuABC transporter. ZnuABC is absent in eukaryotes and plays an important role in bacterial virulence. Consequently, ZnuA, the periplasmic component of the transporter, appeared as a good target candidate to find new compounds able to contrast bacterial growth by interfering with Zn(II) uptake. METHODS: Antibacterial activity assays on selected compounds from and in-house library against Salmonella enterica serovar Typhimurium ATCC14028 were performed. The X-ray structure of the complex formed by SeZnuA with an active compound was solved at 2.15Å resolution. RESULTS: Two di-aryl pyrrole hydroxamic acids differing in the position of a chloride ion, RDS50 ([1-[(4-chlorophenyl)methyl]-4-phenyl-1H-pyrrol-3-hydroxamic acid]) and RDS51 (1-[(2-chlorophenyl)methyl]-4-phenyl-1H-pyrrol-3-hydroxamic acid) were able to inhibit Salmonella growth and its invasion ability of Caco-2 cells. The X-ray structure of SeZnuA containing RDS51 revealed its presence at the metal binding site concomitantly with Zn(II) which is coordinated by protein residues and the hydroxamate moiety of the compound. CONCLUSIONS: Two molecules interfering with ZnuA-mediated Zn(II) transport in Salmonella have been identified for the first time. The resolution of the SeZnuA-RDS51 X-ray structure revealed that RDS51 is tightly bound both to the protein and to Zn(II) thereby inhibiting its release. These features pave the way to the rational design of new Zn(II)-binding drugs against Salmonella. GENERAL SIGNIFICANCE: The data reported show that targeting the bacterial ZnuABC transporter can represent a good strategy to find new antibiotics against Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Hydroxamic Acids/pharmacology , Pyrroles/pharmacology , Salmonella typhimurium/drug effects , Zinc/metabolism , Caco-2 Cells , Cation Transport Proteins/metabolism , Humans , Hydroxamic Acids/chemistry , Pyrroles/chemistry , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Zinc/pharmacology
13.
Amino Acids ; 49(7): 1147-1157, 2017 07.
Article in English | MEDLINE | ID: mdl-28396959

ABSTRACT

Huntington's disease (HD) or Huntington's chorea is the most common inherited, dominantly transmitted, neurodegenerative disorder. It is caused by increased CAG repeats number in the gene coding for huntingtin (Htt) and characterized by motor, behaviour and psychiatric symptoms, ultimately leading to death. HD patients also exhibit alterations in glucose and energetic metabolism, which result in pronounced weight loss despite sustained calorie intake. Glucose metabolism decreases in the striatum of all the subjects with mutated Htt, but affects symptom presentation only when it drops below a specific threshold. Recent evidence points at defects in glucose uptake by the brain, and especially by neurons, as a relevant component of central glucose hypometabolism in HD patients. Here we review the main features of glucose metabolism and transport in the brain in physiological conditions and how these processes are impaired in HD, and discuss the potential ability of strategies aimed at increasing intracellular energy levels to counteract neurological and motor degeneration in HD patients.


Subject(s)
Brain/metabolism , Energy Metabolism , Glucose/metabolism , Huntington Disease/metabolism , Biological Transport, Active/genetics , Brain/pathology , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Trinucleotide Repeat Expansion
14.
J Enzyme Inhib Med Chem ; 32(1): 304-310, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28098499

ABSTRACT

The study presented here aimed at identifying a new class of compounds acting against Leishmania parasites, the causative agent of Leishmaniasis. For this purpose, the thioether derivatives of our in-house library have been evaluated in whole-cell screening assays in order to determine their in vitro activity against Leishmania protozoan. Among them, promising results have been achieved with compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine) (IC50 = 29.43 µM), which is able to impair the mechanism of the parasite defence against the reactive oxygen species by inhibiting the trypanothione reductase (TR) with high efficiency (Ki 0.25 ± 0.18 µM). The X-ray structure of L. infantum TR in complex with RDS 777 disclosed the mechanism of action of this compound that binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding and avoiding its reduction.


Subject(s)
Leishmania infantum/enzymology , NADH, NADPH Oxidoreductases/antagonists & inhibitors , Sulfides/pharmacology , Crystallography, X-Ray , Models, Molecular , NADH, NADPH Oxidoreductases/chemistry
15.
Biochim Biophys Acta ; 1850(9): 1891-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26033467

ABSTRACT

BACKGROUND: Leishmania infantum is a protozoan of the trypanosomatid family causing visceral leishmaniasis. Leishmania parasites are transmitted by the bite of phlebotomine sand flies to the human host and are phagocyted by macrophages. The parasites synthesize N1-N8-bis(glutationyl)-spermidine (trypanothione, TS2), which furnishes electrons to the tryparedoxin-tryparedoxin peroxidase couple to reduce the reactive oxygen species produced by macrophages. Trypanothione is kept reduced by trypanothione reductase (TR), a FAD-containing enzyme essential for parasite survival. METHODS: The enzymatic activity has been studied by stopped-flow, absorption spectroscopy, and amperometric measurements. RESULTS: The study reported here demonstrates that the steady-state parameters change as a function of the order of substrates addition to the TR-containing solution. In particular, when the reaction is carried out by adding NADPH to a solution containing the enzyme and trypanothione, the KM for NADPH decreases six times compared to the value obtained by adding TS2 as last reagent to start the reaction (1.9 vs. 12µM). More importantly, we demonstrate that TR is able to catalyze the oxidation of NADPH also in the absence of trypanothione. Thus, TR catalyzes the reduction of O2 to water through the sequential formation of C(4a)-(hydro)peroxyflavin and sulfenic acid intermediates. This NADPH:O2 oxidoreductase activity is shared by Saccharomyces cerevisiae glutathione reductase (GR). CONCLUSIONS: TR and GR, in the absence of their physiological substrates, may catalyze the electron transfer reaction from NADPH to molecular oxygen to yield water. GENERAL SIGNIFICANCE: TR and GR are promiscuous enzymes.


Subject(s)
Glutathione Reductase/metabolism , Leishmania infantum/enzymology , NADH, NADPH Oxidoreductases/metabolism , Oxygen/metabolism , Catalysis , Electron Transport , NADP/metabolism , Oxidation-Reduction , Oxygen Consumption
16.
Biochim Biophys Acta ; 1840(1): 535-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24128931

ABSTRACT

BACKGROUND: In Gram-negative bacteria the ZnuABC transporter ensures adequate zinc import in Zn(II)-poor environments, like those encountered by pathogens within the infected host. Recently, the metal-binding protein ZinT was suggested to operate as an accessory component of ZnuABC in periplasmic zinc recruitment. Since ZinT is known to form a ZinT-ZnuA complex in the presence of Zn(II) it was proposed to transfer Zn(II) to ZnuA. The present work was undertaken to test this claim. METHODS: ZinT and its structural relationship with ZnuA have been characterized by multiple biophysical techniques (X-ray crystallography, SAXS, analytical ultracentrifugation, fluorescence spectroscopy). RESULTS: The metal-free and metal-bound crystal structures of Salmonella enterica ZinT show one Zn(II) binding site and limited structural changes upon metal removal. Spectroscopic titrations with Zn(II) yield a KD value of 22±2nM for ZinT, while those with ZnuA point to one high affinity (KD<20nM) and one low affinity Zn(II) binding site (KD in the micromolar range). Sedimentation velocity experiments established that Zn(II)-bound ZinT interacts with ZnuA, whereas apo-ZinT does not. The model of the ZinT-ZnuA complex derived from small angle X-ray scattering experiments points to a disposition that favors metal transfer as the metal binding cavities of the two proteins face each other. CONCLUSIONS: ZinT acts as a Zn(II)-buffering protein that delivers Zn(II) to ZnuA. GENERAL SIGNIFICANCE: Knowledge of the ZinT-ZnuA relationship is crucial for understanding bacterial Zn(II) uptake.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Periplasm/metabolism , Salmonella enterica/metabolism , Zinc/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation , Scattering, Small Angle , Sequence Homology, Amino Acid , Ultracentrifugation , X-Ray Diffraction
17.
J Chem Inf Model ; 55(12): 2611-22, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26551337

ABSTRACT

Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.


Subject(s)
14-3-3 Proteins/metabolism , Giardia lamblia/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protozoan Proteins/metabolism , 14-3-3 Proteins/chemistry , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protozoan Proteins/chemistry
18.
Biochim Biophys Acta ; 1830(6): 3745-55, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23396000

ABSTRACT

BACKGROUND: The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. METHODS: The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. RESULTS: In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. CONCLUSIONS: Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. GENERAL SIGNIFICANCE: The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center.


Subject(s)
Actinomycetales/enzymology , Bacterial Proteins/chemistry , Ceruloplasmin/chemistry , DNA-Binding Proteins/chemistry , Oxidative Stress/physiology , Actinomycetales/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Iron/chemistry , Iron/metabolism , Manganese/chemistry , Manganese/metabolism , Protein Structure, Quaternary
19.
Proteins ; 82(12): 3437-49, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25257552

ABSTRACT

Serine hydroxymethyltransferases (SHMTs) play an essential role in one-carbon unit metabolism and are used in biomimetic reactions. We determined the crystal structure of free (apo) and pyridoxal-5'-phosphate-bound (holo) SHMT from Methanocaldococcus jannaschii, the first from a hyperthermophile, from the archaea domain of life and that uses H4MPT as a cofactor, at 2.83 and 3.0 Å resolution, respectively. Idiosyncratic features were observed that are likely to contribute to structure stabilization. At the dimer interface, the C-terminal region folds in a unique fashion with respect to SHMTs from eubacteria and eukarya. At the active site, the conserved tyrosine does not make a cation-π interaction with an arginine like that observed in all other SHMT structures, but establishes an amide-aromatic interaction with Asn257, at a different sequence position. This asparagine residue is conserved and occurs almost exclusively in (hyper)thermophile SHMTs. This led us to formulate the hypothesis that removal of frustrated interactions (such as the Arg-Tyr cation-π interaction occurring in mesophile SHMTs) is an additional strategy of adaptation to high temperature. Both peculiar features may be tested by designing enzyme variants potentially endowed with improved stability for applications in biomimetic processes.


Subject(s)
Archaeal Proteins/chemistry , Glycine Hydroxymethyltransferase/chemistry , Methanocaldococcus/enzymology , Models, Molecular , Amino Acid Sequence , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Asparagine/chemistry , Catalytic Domain , Dimerization , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Holoenzymes/chemistry , Holoenzymes/genetics , Holoenzymes/metabolism , Hot Temperature , Ligands , Methanocaldococcus/growth & development , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Protein Stability , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Tyrosine/chemistry
20.
Molecules ; 19(9): 13976-89, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25197934

ABSTRACT

Sorcin is a penta-EF hand calcium binding protein, which participates in the regulation of calcium homeostasis in cells. Sorcin regulates calcium channels and exchangers located at the plasma membrane and at the endo/sarcoplasmic reticulum (ER/SR), and allows high levels of calcium in the ER to be maintained, preventing ER stress and possibly, the unfolded protein response. Sorcin is highly expressed in the heart and in the brain, and overexpressed in many cancer cells. Sorcin gene is in the same amplicon as other genes involved in the resistance to chemotherapeutics in cancer cells (multi-drug resistance, MDR) such as ABCB4 and ABCB1; its overexpression results in increased drug resistance to a number of chemotherapeutic agents, and inhibition of sorcin expression by sorcin-targeting RNA interference leads to reversal of drug resistance. Sorcin is increasingly considered a useful marker of MDR and may represent a therapeutic target for reversing tumor multidrug resistance.


Subject(s)
Calcium-Binding Proteins/physiology , Drug Resistance, Neoplasm , Amino Acid Sequence , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Brain/metabolism , Drug Resistance, Multiple , Humans , Molecular Sequence Data , Myocardium/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Organ Specificity
SELECTION OF CITATIONS
SEARCH DETAIL