Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Bioorg Med Chem ; 25(7): 2133-2147, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28284870

ABSTRACT

Cell division cycle 7 (Cdc7) is a serine/threonine kinase that plays important roles in the regulation of DNA replication process. A genetic study indicates that Cdc7 inhibition can induce selective tumor-cell death in a p53-dependent manner, suggesting that Cdc7 is an attractive target for the treatment of cancers. In order to identify a new class of potent Cdc7 inhibitors, we generated a putative pharmacophore model based on in silico docking analysis of a known inhibitor with Cdc7 homology model. The pharmacophore model provided a minimum structural motif of Cdc7 inhibitor, by which preliminary medicinal chemistry efforts identified a dihydrothieno[3,2-d]-pyrimidin-4(1H)-one scaffold having a heteroaromatic hinge-binding moiety. The structure-activity relationship (SAR) studies resulted in the discovery of new, potent, and selective Cdc7 inhibitors 14a, c, e. Furthermore, the high selectivity of 14c, e for Cdc7 over Rho-associated protein kinase 1 (ROCK1) is discussed by utilizing a docking study with Cdc7 and ROCK2 crystal structures.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidinones/pharmacology , Humans , Models, Molecular , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship
2.
Biochem Biophys Res Commun ; 479(2): 179-185, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27608596

ABSTRACT

Inhibitors of apoptosis proteins (IAPs) are a family of antiapoptotic regulators that have attracted attention as potential targets for cancer therapeutics. Although recent studies have revealed that small-molecule IAP antagonists induce tumor selective cell death in an autocrine tumor necrosis factor (TNF)α-dependent manner, the single-agent efficacy of IAP antagonists is restricted to a small subset of cancer cells. In this study, we showed that the single-agent activity of T-3256336 was limited to a few cancer cell lines inĀ vitro, and these cell lines were defined by relatively high levels of TNFα mRNA expression. However, some other cancer cells, including PANC-1Ā cells, become drastically sensitive to T-3256336 when costimulated with exogenous TNFα. In PANC-1 mouse xenograft models, the administration of T-3256336 increased levels of several cytokines including TNFα and lead to tumor regression as a single agent, which was attenuated by the neutralization of circulating mouse TNFα with an antibody. These results suggest dual roles of IAP antagonists, increase systemic cytokines including TNFα, and sensitization of tumors to IAP antagonist-induced death.


Subject(s)
Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Oligopeptides/pharmacology , Pyrazines/pharmacology , Tumor Necrosis Factor-alpha/genetics , Administration, Oral , Animals , Blotting, Western , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Neoplastic/drug effects , HL-60 Cells , Humans , Inhibitor of Apoptosis Proteins/metabolism , MCF-7 Cells , Mice , Neoplasms/genetics , Neoplasms/metabolism , Oligopeptides/administration & dosage , Pyrazines/administration & dosage , Reverse Transcriptase Polymerase Chain Reaction , Tumor Burden/drug effects , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/pharmacology , Xenograft Model Antitumor Assays
3.
Biochem Biophys Res Commun ; 480(3): 380-386, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27771247

ABSTRACT

Inhibitors of apoptosis proteins (IAPs) are antiapoptotic regulators that block cell death, and are frequently overexpressed in several human cancers, where they facilitate evasion of apoptosis and promote cell survival. IAP antagonists are also known as second mitochondria-derived activator of caspase (SMAC)-mimetics, and have recently been considered as novel therapeutic agents for inducing apoptosis, alone and in combination with other anticancer drugs. In this study, we showed that T-3256336, the orally available IAP antagonist has synergistically enhances the antiproliferative effects of the NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924), and these effects were attenuated by a TNFα-neutralizing antibody. In the present mechanistic analyses, pevonedistat induced TNFα mRNA and triggered IAP antagonist-dependent extrinsic apoptotic cell death in cancer cell lines. Furthermore, synergistic effects of the combination of T-3256336 and pevonedistat were demonstrated in a HL-60 mouse xenograft model. Our findings provide mechanistic evidence of the effects of IAP antagonists in combination with NAE inhibitors, and demonstrate the potential of a new combination therapy for cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Cyclopentanes/administration & dosage , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Oligopeptides/administration & dosage , Pyrazines/administration & dosage , Pyrimidines/administration & dosage , Ubiquitins/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Humans , Mice , NEDD8 Protein , Neoplasms, Experimental/pathology , Treatment Outcome
4.
Bioorg Med Chem Lett ; 26(17): 4296-300, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476141

ABSTRACT

Centromere-associated protein-E (CENP-E) is a mitotic kinesin which plays roles in cell division, and is regarded as a promising therapeutic target for the next generation of anti-mitotic agents. We designed novel fused bicyclic CENP-E inhibitors starting from previous reported dihydrobenzofuran derivative (S)-(+)-1. Our design concept was to adjust the electron density distribution on the benzene ring of the dihydrobenzofuran moiety to increase the positive charge for targeting the negatively charged L5 loop of CENP-E, using predictions from electrostatic potential map (EPM) analysis. For the efficient synthesis of our 2,3-dihydro-1-benzothiophene 1,1-dioxide derivatives, a new synthetic method was developed. As a result, we discovered 6-cyano-7-trifluoromethyl-2,3-dihydro-1-benzothiophene 1,1-dioxide derivative (+)-5d (Compound A) as a potent CENP-E inhibitor with promising potential for in vivo activity. In this Letter, we discuss the design and synthetic strategy used in the discovery of (+)-5d and structure-activity relationships for its analogs possessing various fused bicyclic L5 binding moieties.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Cyclic S-Oxides/chemical synthesis , Drug Delivery Systems , Drug Design , Imidazoles/chemical synthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , HeLa Cells , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Protein Binding/drug effects , Structure-Activity Relationship
5.
Chem Pharm Bull (Tokyo) ; 63(11): 858-65, 2015.
Article in English | MEDLINE | ID: mdl-26521850

ABSTRACT

Different crystal packing of hydrates from anhydrate crystals leads to different physical properties, such as solubility and stability. Investigation of the potential of varied hydrate formation, and understanding the stability in an anhydrous/hydrate system, are crucial to prevent an undesired transition during the manufacturing process and storage. Only one anhydrous form of T-3256336, a novel inhibitor of apoptosis (IAP) protein antagonist, was discovered during synthesis, and no hydrate form has been identified. In this study, we conducted hydrate screening such as dynamic water vapor sorption/desorption (DVS), and the slurry experiment, and characterized the solid-state properties of anhydrous/hydrate forms to determine the most desirable crystalline form for development. New hydrate forms, both mono-hydrate and hemi-hydrate forms, were discovered as a result of this hydrate screening. The characterization of two new hydrate forms was conducted, and the anhydrous form was determined to be the most desirable development form of T-3256336 in terms of solid-state stability. In addition, the stability of the anhydrous form was investigated using the water content and temperature controlled slurry experiment to obtain the desirable crystal form in the crystallization process. The water content regions of the stable phase of the desired form, the anhydrous form, were identified for the cooling crystallization process.


Subject(s)
Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Oligopeptides/chemistry , Pyrazines/chemistry , Water/chemistry , Calorimetry, Differential Scanning , Crystallography, X-Ray , Drug Discovery , Drug Stability , Humans , Humidity , Models, Molecular , Phase Transition , Solubility
6.
Bioorg Med Chem ; 21(17): 5488-502, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23816042

ABSTRACT

Centromere-associated protein-E (CENP-E), a mitotic kinesin that plays an important role in mitotic progression, is an attractive target for cancer therapeutic drugs. For the purpose of developing novel CENP-E inhibitors as cancer therapeutics, we investigated a fused bicyclic compound identified by high throughput screening, 4-oxo-4,5-dihydrothieno[3,4-c]pyridine-6-carboxamide 1a. Based on this scaffold, we designed inhibitors for efficient binding at the L5 site in CENP-E utilizing homology modeling as well as electrostatic potential map (EPM) analysis to enhance CENP-E inhibitory activity. This resulted in a new lead, 5-bromoimidazo[1,2-a]pyridine 7, which showed potent CENP-E enzyme inhibition (IC50: 50nM) and cellular activity with accumulation of phosphorylated histone H3 in HeLa cells. Our homology model and EPM analysis proved to be useful tools for the rational design of CENP-E inhibitors.


Subject(s)
Amides/chemical synthesis , Bridged Bicyclo Compounds/chemistry , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Imidazoles/chemical synthesis , Pyridines/chemical synthesis , Amides/chemistry , Amides/metabolism , Binding Sites , Chromosomal Proteins, Non-Histone/metabolism , HeLa Cells , Histones/metabolism , Humans , Imidazoles/chemistry , Imidazoles/metabolism , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/metabolism , Static Electricity , Structure-Activity Relationship
7.
Bioorg Med Chem ; 21(8): 2250-2261, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23490150

ABSTRACT

A novel 7,6 fused bicyclic scaffold, pyrimido[4,5-b]azepine was designed to fit into the ATP binding site of the HER2/EGFR proteins. The synthesis of this scaffold was accomplished by an intramolecular Claisen-type condensation. As the results of optimization lead us to 4-anilino and 6-functional groups, we discovered 6-substituted amide derivative 19b, which has a 1-benzothiophen-4-yloxy group attached to the 4-anilino group. An X-ray co-crystal structure of 19b with EGFR demonstrated that the N-1 and N-3 nitrogens of the pyrimido[4,5-b]azepine scaffold make hydrogen-bonding interactions with the main chain NH of Met793 and the side chain of Thr854 via a water-mediated hydrogen bond network, respectively. In addition, the NH proton at the 9-position makes an additional hydrogen bond with the carbonyl group of Met793, as we expected. Compound 19b revealed potent HER2/EGFR kinase (IC50: 24/36 nM) and BT474 cell growth (GI50: 18 nM) inhibitory activities based on its pseudo-irreversible (PI) profile.


Subject(s)
Azepines/chemistry , Azepines/pharmacology , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Azepines/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Female , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Stereoisomerism , Structure-Activity Relationship
8.
Bioorg Med Chem ; 21(18): 5725-37, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23928071

ABSTRACT

We recently reported the discovery of octahydropyrrolo[1,2-a]pyrazine A as a lead compound for an inhibitor of apoptosis proteins (IAP) antagonist. To develop IAP antagonists with favorable PK profiles, we designed novel tri-cyclic compounds, octahydro-1H-cyclopropa[4,5]pyrrolo[1,2-a]pyrazines 1 and 2 based on co-crystal structural analysis of A with cellular IAP-1 (cIAP-1). The additional cyclopropane moiety was used to block the predicted metabolic site of compound A without detriment to the binding affinity for cIAP. Compounds 1 and 2 were stereoselectively synthesized via intermediates 4a and 5b', which were obtained by Simmons-Smith cyclopropanation of ethylester 3a and silyl ether 3b'. Compounds 1 and 2 showed strong growth inhibition in MDA-MB-231 breast cancer cells and improved metabolic stability in comparison to A. Compound 2 exhibited significant in vivo PD effects to increase tumor necrosis factor-alpha mRNA in a dose dependent manner.


Subject(s)
Drug Design , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Pyrazines/chemistry , Pyrroles/chemical synthesis , Animals , Benzopyrans/chemical synthesis , Benzopyrans/pharmacokinetics , Benzopyrans/therapeutic use , Binding Sites , Breast Neoplasms/drug therapy , Cell Line, Tumor , Crystallography, X-Ray , Female , Half-Life , Humans , Inhibitor of Apoptosis Proteins/metabolism , Mice , Molecular Dynamics Simulation , Protein Structure, Tertiary , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , RNA, Messenger/metabolism , Stereoisomerism , Transplantation, Heterologous , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
Bioorg Med Chem ; 21(24): 7938-54, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24169315

ABSTRACT

We previously reported octahydropyrrolo[1,2-a]pyrazine derivative 2 (T-3256336) as a potent antagonist for inhibitors of apoptosis (IAP) proteins. Because compound 2 was susceptible to MDR1 mediated efflux, we developed another scaffold, hexahydropyrazino[1,2-a]indole, using structure-based drug design. The fused benzene ring of this scaffold was aimed at increasing the lipophilicity and decreasing the basicity of the scaffold to improve the membrane permeability across MDR1 expressing cells. We established a chiral pool synthetic route to yield the desired tricyclic chiral isomers. Chemical modification of the core scaffold led to a representative compound 50, which showed strong inhibition of IAP binding (X chromosome-linked IAP [XIAP]: IC50 23 nM and cellular IAP [cIAP]: IC50 1.1 nM) and cell growth inhibition (MDA-MB-231 cells: GI50 2.8 nM) with high permeability and low potential of MDR1 substrate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Membrane Permeability/drug effects , Drug Design , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/pharmacology , Pyrazines/pharmacology , ATP Binding Cassette Transporter, Subfamily B , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Inhibitor of Apoptosis Proteins/chemical synthesis , Inhibitor of Apoptosis Proteins/chemistry , Models, Molecular , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
10.
J Biol Chem ; 286(21): 18756-65, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21454582

ABSTRACT

Aberrant signaling of ErbB family members human epidermal growth factor 2 (HER2) and epidermal growth factor receptor (EGFR) is implicated in many human cancers, and HER2 expression is predictive of human disease recurrence and prognosis. Small molecule kinase inhibitors of EGFR and of both HER2 and EGFR have received approval for the treatment of cancer. We present the first high resolution crystal structure of the kinase domain of HER2 in complex with a selective inhibitor to understand protein activation, inhibition, and function at the molecular level. HER2 kinase domain crystallizes as a dimer and suggests evidence for an allosteric mechanism of activation comparable with previously reported activation mechanisms for EGFR and HER4. A unique Gly-rich region in HER2 following the α-helix C is responsible for increased conformational flexibility within the active site and could explain the low intrinsic catalytic activity previously reported for HER2. In addition, we solved the crystal structure of the kinase domain of EGFR in complex with a HER2/EGFR dual inhibitor (TAK-285). Comparison with previously reported inactive and active EGFR kinase domain structures gave insight into the mechanism of HER2 and EGFR inhibition and may help guide the design and development of new cancer drugs with improved potency and selectivity.


Subject(s)
Receptor, ErbB-2/chemistry , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Crystallography, X-Ray , Drug Design , Enzyme Activation/drug effects , Enzyme Activation/genetics , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-4 , Structure-Activity Relationship
11.
Bioorg Med Chem ; 20(18): 5600-15, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22883026

ABSTRACT

Our aim was to discover RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors that possess strong activity and sufficient oral absorption, and thus, we selected a 5-amino-linked thiazolo[5,4-d]pyrimidine derivative as the lead compound because of its potential kinase inhibitory activities and its desired solubility. The novel tertiary 1-cyano-1-methylethoxy substituent was designed to occupy the hydrophobic region of 'back pocket' of BRAF on the basis of the X-ray co-crystal structure data of BRAF. In addition, we found that N-methylation of the amine linker could control the twisted molecular conformation leading to improved solubility. These approaches produced N-methyl thiazolo[5,4-b]pyridine-5-amine derivative 5. To maximize the in vivo efficacy, we attempted salt formation of 5. Our result indicated that the besylate monohydrate salt form (5c) showed significant improvement of both solubility and oral absorption. Owing to the improved physicochemical properties, compound 5c demonstrated regressive antitumor efficacy in a HT-29 xenograft model.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Neoplasms, Experimental/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Thiazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , HT29 Cells , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mice , Microsomes/drug effects , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Rats , Rats, Inbred F344 , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
12.
Bioorg Med Chem ; 20(15): 4680-92, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22763369

ABSTRACT

As an alternative to the previously reported solid dispersion formulation for enhancing the oral absorption of thiazolo[5,4-b]pyridine 1, we investigated novel N-acyl imide prodrugs of 1 as RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. Introducing N-acyl promoieties at the benzanilide position gave chemically stable imides. N-tert-Butoxycarbonyl (Boc) introduced imide 6 was a promising prodrug, which was converted to the active compound 1 after its oral administration in mice. Cocrystals of 6 with AcOH (6b) possessed good physicochemical properties with moderate thermodynamic solubility (19Āµg/mL). This crystalline prodrug 6b was rapidly and enzymatically converted into 1 after its oral absorption in mice, rats, dogs, and monkeys. Prodrug 6b showed in vivo antitumor regressive efficacy (T/C=-6.4%) in an A375 melanoma xenograft model in rats. Hence, we selected 6b as a promising candidate and are performing further studies. Herein, we report the design, synthesis, and characterization of novel imide-type prodrugs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Imides/pharmacology , Prodrugs/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Dose-Response Relationship, Drug , Female , Haplorhini , Humans , Imides/administration & dosage , Imides/chemical synthesis , Mice , Models, Molecular , Molecular Structure , Prodrugs/administration & dosage , Prodrugs/chemical synthesis , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Rats , Rats, Nude , Solubility , Structure-Activity Relationship , Thermodynamics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
13.
Bioorg Med Chem ; 20(20): 6171-80, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22980219

ABSTRACT

During the course of our studies on a novel HER2/EGFR dual inhibitor (TAK-285), we found an alternative potent pyrrolo[3,2-d]pyrimidine compound (1a). To enhance the pharmacokinetic (PK) profile of this compound, we conducted chemical modifications into its N-5 side chain and conversion of the chemically modified compounds into their salts. Among them, 2cb, the tosylate salt of compound 2c, showed potent HER2/EGFR kinase inhibitory activity (IC(50): 11/11 nM) and cellular growth inhibitory activity (BT-474 cell GI(50): 56 nM) with a good drug metabolism and PK (DMPK) profile. Furthermore, 2cb exhibited significant in vivo antitumor efficacy in both mouse and rat xenograft models with transplanted 4-1ST gastric cancer cell lines (mouse, T/C=0%, 2cb po bid at 100 mg/kg; rat, T/C: -1%, 2cb po bid at 25 mg/kg).


Subject(s)
Antineoplastic Agents/chemical synthesis , Drug Design , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Pyrroles/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Sulfones/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , ErbB Receptors/metabolism , Half-Life , Humans , Mice , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Rats , Receptor, ErbB-2/metabolism , Stomach Neoplasms/drug therapy , Sulfones/chemistry , Sulfones/pharmacokinetics , Transplantation, Heterologous
14.
Org Lett ; 7(20): 4399-402, 2005 Sep 29.
Article in English | MEDLINE | ID: mdl-16178543

ABSTRACT

[structure: see text] A second generation total synthesis of the potent antitumor agent (+)-phorboxazole A (1) has been achieved. The cornerstone of this approach comprises a more convergent strategy, involving late-stage Stille union of a fully elaborated C(1-28) macrocycle with a C(29-46) side chain. The second generation synthesis entails the longest linear sequence of 24 steps, with an overall yield of 4.2%.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Oxazoles/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Molecular Structure , Oxazoles/chemistry
15.
J Med Chem ; 58(20): 8036-53, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26372373

ABSTRACT

To develop centromere-associated protein-E (CENP-E) inhibitors for use as anticancer therapeutics, we designed novel imidazo[1,2-a]pyridines, utilizing previously discovered 5-bromo derivative 1a. By site-directed mutagenesis analysis, we confirmed the ligand binding site. A docking model revealed the structurally important molecular features for effective interaction with CENP-E and could explain the superiority of the inhibitor (S)-isomer in CENP-E inhibition vs the (R)-isomer based on the ligand conformation in the L5 loop region. Additionally, electrostatic potential map (EPM) analysis was employed as a ligand-based approach to optimize functional groups on the imidazo[1,2-a]pyridine scaffold. These efforts led to the identification of the 5-methoxy imidazo[1,2-a]pyridine derivative (+)-(S)-12, which showed potent CENP-E inhibition (IC50: 3.6 nM), cellular phosphorylated histone H3 (p-HH3) elevation (EC50: 180 nM), and growth inhibition (GI50: 130 nM) in HeLa cells. Furthermore, (+)-(S)-12 demonstrated antitumor activity (T/C: 40%, at 75 mg/kg) in a human colorectal cancer Colo205 xenograft model in mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Animals , Binding Sites , Drug Design , HeLa Cells , Histones/metabolism , Humans , Ligands , Mice , Mitosis/drug effects , Models, Molecular , Mutagenesis, Site-Directed , Phosphorylation , Static Electricity , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
Nat Commun ; 6: 7668, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26144554

ABSTRACT

The molecular mechanism responsible that determines cell fate after mitotic slippage is unclear. Here we investigate the post-mitotic effects of different mitotic aberrations--misaligned chromosomes produced by CENP-E inhibition and monopolar spindles resulting from Eg5 inhibition. Eg5 inhibition in cells with an impaired spindle assembly checkpoint (SAC) induces polyploidy through cytokinesis failure without a strong anti-proliferative effect. In contrast, CENP-E inhibition causes p53-mediated post-mitotic apoptosis triggered by chromosome missegregation. Pharmacological studies reveal that aneuploidy caused by the CENP-E inhibitor, Compound-A, in SAC-attenuated cells causes substantial proteotoxic stress and DNA damage. Polyploidy caused by the Eg5 inhibitor does not produce this effect. Furthermore, p53-mediated post-mitotic apoptosis is accompanied by aneuploidy-associated DNA damage response and unfolded protein response activation. Because Compound-A causes p53 accumulation and antitumour activity in an SAC-impaired xenograft model, CENP-E inhibitors could be potential anticancer drugs effective against SAC-impaired tumours.


Subject(s)
Aneuploidy , Apoptosis , DNA Damage , M Phase Cell Cycle Checkpoints/physiology , Tumor Suppressor Protein p53/physiology , Animals , Caspase 3/genetics , Caspase 3/metabolism , Caspase 7 , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , HeLa Cells , Heterografts , Humans , Kinesins/antagonists & inhibitors , Mice , Mice, Nude , Mitosis , Neoplasms, Experimental , Stress, Physiological
17.
Oncoscience ; 1(3): 196-204, 2014.
Article in English | MEDLINE | ID: mdl-25594012

ABSTRACT

The human epidermal growth factor receptor (HER) family plays a major role in cancer cell proliferation. Overexpression of these receptors occurs in various cancers, including breast cancer, and correlates with shorter time to relapse and lower overall survival. We recently reported that TAK-285, an orally bioavailable small molecule inhibitor of HER kinases, is not a p-glycoprotein substrate and penetrates the blood-brain barrier, suggesting favorable activity for the treatment of brain metastases. To identify the determinants of sensitivity to TAK-285, we examined the relationship between the IC50 values of TAK-285 for cell growth inhibition and the expression of candidate genes that are involved in the HER family signaling pathway and trastuzumab resistance in a panel of human breast cancer cell lines, other types of cancer cells, and non-transformed cells in vitro. These analyses showed an inverse correlation between sensitivity to TAK-285 (IC50 values) and HER2 or HER3 expression. HER3 was highly phosphorylated in TAK-285-sensitive cells, where TAK-285 treatment reduced HER3 phosphorylation level. Because HER3 does not possess kinase activity and a selective inhibitor of HER2 but not of an epidermal growth factor receptor reduced the phospho-HER3 level, HER3 was suggested to be trans-phosphorylated by HER2. HER3 knockdown using small interfering RNA (siRNA) inhibited cancer cell growth in TAK-285-sensitive cells but not in TAK-285-insensitive cells. These results suggest that HER2 and HER3 mainly regulate cancer cell growth in TAK-285-sensitive cells and that phospho-HER3 could be used as a potential molecular marker to select patients most likely to respond to TAK-285.

18.
J Cancer ; 4(7): 557-65, 2013.
Article in English | MEDLINE | ID: mdl-23983820

ABSTRACT

Breast cancer therapy has improved following the development of drugs with specific molecular targets, exemplified by inhibitors of human epidermal growth factor receptor-2 (HER2) or epidermal growth factor receptor (EGFR) such as trastuzumab and lapatinib. However, these drugs have little effect on brain metastasis due to the combined effects of poor penetration of the blood-brain barrier and their removal from the central nervous system (CNS) by the p-glycoprotein (Pgp) drug efflux pump. We investigated the effects of TAK-285, a novel, investigational, dual EGFR/HER2 inhibitor that has been shown to penetrate the CNS and has comparable inhibitory efficacy to lapatinib which is a known Pgp substrate. Tested against a panel of 96 kinases, TAK-285 showed specificity for inhibition of HER family kinases. Unlike lapatinib, TAK-285 is not a substrate for Pgp efflux. In mouse and rat xenograft tumor models, TAK-285 showed antitumor activity against cancers that expressed HER2 or EGFR. TAK-285 was as effective as lapatinib in antitumor activity in a mouse subcutaneous BT-474 breast cancer xenograft model. TAK-285 was examined in a model of breast cancer brain metastasis using direct intracranial injection of BT-474-derived luciferase-expressing cells and showed greater inhibition of brain tumor growth compared to animals treated with lapatinib. Our studies suggest that investigational drugs such as TAK-285 that have strong antitumor activity and are not Pgp substrates may be useful in the development of agents with the potential to treat brain metastases.

19.
ACS Med Chem Lett ; 4(2): 201-5, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-24900643

ABSTRACT

The epidermal growth factor receptor (EGFR) family plays a critical role in vital cellular processes and in various cancers. Known EGFR inhibitors exhibit distinct antitumor responses against the various EGFR mutants associated with nonsmall-cell lung cancer. The L858R mutation enhances clinical sensitivity to gefitinib and erlotinib as compared with wild type and reduces the relative sensitivity to lapatinib. In contrast, the T790M mutation confers drug resistance to gefitinib and erlotinib. We determined crystal structures of the wild-type and T790M/L858R double mutant EGFR kinases with reversible and irreversible pyrrolo[3,2-d]pyrimidine inhibitors based on analogues of TAK-285 and neratinib. In these structures, M790 adopts distinct conformations to accommodate different inhibitors, whereas R858 allows conformational variations of the activation loop. These results provide structural insights for understanding the structure-activity relationships that should contribute to the development of potent inhibitors against drug-sensitive or -resistant EGFR mutations.

20.
Cancer Res ; 73(23): 7043-55, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24121489

ABSTRACT

The mitogen-activated protein kinase (MAPK) pathway is particularly important for the survival and proliferation of melanoma cells. Somatic mutations in BRAF and NRAS are frequently observed in melanoma. Recently, the BRAF inhibitors vemurafenib and dabrafenib have emerged as promising agents for the treatment of melanoma patients with BRAF-activating mutations. However, as BRAF inhibitors induce RAF paradoxical activation via RAF dimerization in BRAF wild-type cells, rapid emergence of acquired resistance and secondary skin tumors as well as presence of few effective treatment options for melanoma bearing wild-type BRAF (including NRAS-mutant melanoma) are clinical concerns. Here, we demonstrate that the selective pan-RAF inhibitor TAK-632 suppresses RAF activity in BRAF wild-type cells with minimal RAF paradoxical activation. Our analysis using RNAi and TAK-632 in preclinical models reveals that the MAPK pathway of NRAS-mutated melanoma cells is highly dependent on RAF. We also show that TAK-632 induces RAF dimerization but inhibits the kinase activity of the RAF dimer, probably because of its slow dissociation from RAF. As a result, TAK-632 demonstrates potent antiproliferative effects both on NRAS-mutated melanoma cells and BRAF-mutated melanoma cells with acquired resistance to BRAF inhibitors through NRAS mutation or BRAF truncation. Furthermore, we demonstrate that the combination of TAK-632 and the MAPK kinase (MEK) inhibitor TAK-733 exhibits synergistic antiproliferative effects on these cells. Our findings characterize the unique features of TAK-632 as a pan-RAF inhibitor and provide rationale for its further investigation in NRAS-mutated melanoma and a subset of BRAF-mutated melanomas refractory to BRAF inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzothiazoles/therapeutic use , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Nitriles/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Skin Neoplasms/drug therapy , raf Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Cells, Cultured , Humans , MAP Kinase Signaling System/drug effects , Melanoma/pathology , Mice , Mice, Nude , Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL