Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5100, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937434

ABSTRACT

Hydrogen bond symmetrisation is the phenomenon where a hydrogen atom is located at the centre of a hydrogen bond. Theoretical studies predict that hydrogen bonds in ice VII eventually undergo symmetrisation upon increasing pressure, involving nuclear quantum effect with significant isotope effect and drastic changes in the elastic properties through several intermediate states with varying hydrogen distribution. Despite numerous experimental studies conducted, the location of hydrogen and hence the transition pressures reported up to date remain inconsistent. Here we report the atomic distribution of deuterium in D2O ice using neutron diffraction above 100 GPa and observe the transition from a bimodal to a unimodal distribution of deuterium at around 80 GPa. At the transition pressure, a significant narrowing of the peak widths of 110 is also observed, attributed to the structural relaxation by the change of elastic properties.

2.
J Phys Chem Lett ; 14(47): 10664-10669, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37988084

ABSTRACT

Ice IV is a metastable high-pressure phase of ice in which the water molecules exhibit orientational disorder. Although orientational ordering is commonly observed for other ice phases, it has not been reported for ice IV. We conducted in situ powder neutron diffraction experiments for DCl-doped D2O ice IV to investigate its hydrogen ordering. We found abrupt changes in the temperature derivative of unit-cell volume, dV/dT, at ∼120 K, and revealed a slightly ordered structure at low temperatures based on the Rietveld method. The occupancy of the D1 site deviates from 0.5 in particular; it increased when samples were cooled at higher pressures and reached 0.174(14) at 2.38 GPa, 58 K. Our results evidence the presence of a low-symmetry hydrogen-ordered state corresponding to ice IV. It seems, however, difficult to experimentally access the completely ordered phase corresponding to ice IV by slow cooling at high pressure.

3.
Nat Commun ; 12(1): 1129, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602936

ABSTRACT

Ice exhibits extraordinary structural variety in its polymorphic structures. The existence of a new form of diversity in ice polymorphism has recently been debated in both experimental and theoretical studies, questioning whether hydrogen-disordered ice can transform into multiple hydrogen-ordered phases, contrary to the known one-to-one correspondence between disordered ice and its ordered phase. Here, we report a high-pressure phase, ice XIX, which is a second hydrogen-partially-ordered phase of ice VI. We demonstrate that disordered ice undergoes different manners of hydrogen ordering, which are thermodynamically controlled by pressure in the case of ice VI. Such multiplicity can appear in all disordered ice, and it widely provides a research approach to deepen our knowledge, for example of the crucial issues of ice: the centrosymmetry of hydrogen-ordered configurations and potentially induced (anti-)ferroelectricity. Ultimately, this research opens up the possibility of completing the phase diagram of ice.

SELECTION OF CITATIONS
SEARCH DETAIL