Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Cell ; 142(3): 387-97, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20655099

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


Subject(s)
Alzheimer Disease/physiopathology , Dendrites/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Brain/pathology , Disks Large Homolog 4 Protein , Guanylate Kinases , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Memory Disorders/metabolism , Mice , Mice, Transgenic , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , tau Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33737393

ABSTRACT

Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-ß (oAß) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAß challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aß precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aß toxicity.


Subject(s)
Amyloid beta-Peptides/metabolism , Cell Cycle/physiology , Neurons/physiology , Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/pharmacology , Amyloid beta-Peptides/toxicity , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers , Cell Survival/drug effects , Disease Models, Animal , Disease Susceptibility , Humans , Mice , Mice, Transgenic
3.
Hum Mol Genet ; 30(11): 971-984, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33729478

ABSTRACT

Previously, we identified missense mutations in CCNF that are causative of familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Hallmark features of these diseases include the build-up of insoluble protein aggregates as well as the mislocalization of proteins such as transactive response DNA binding protein 43 kDa (TDP-43). In recent years, the dysregulation of SFPQ (splicing factor proline and glutamine rich) has also emerged as a pathological hallmark of ALS/FTD. CCNF encodes for the protein cyclin F, a substrate recognition component of an E3 ubiquitin ligase. We have previously shown that ALS/FTD-linked mutations in CCNF cause disruptions to overall protein homeostasis that leads to a build-up of K48-linked ubiquitylated proteins as well as defects in autophagic machinery. To investigate further processes that may be affected by cyclin F, we used a protein-proximity ligation method, known as Biotin Identification (BioID), standard immunoprecipitations and mass spectrometry to identify novel interaction partners of cyclin F and infer further process that may be affected by the ALS/FTD-causing mutation. Results demonstrate that cyclin F closely associates with proteins involved with RNA metabolism as well as a number of RNA-binding proteins previously linked to ALS/FTD, including SFPQ. Notably, the overexpression of cyclin F(S621G) led to the aggregation and altered subcellular distribution of SFPQ in human embryonic kidney (HEK293) cells, while leading to altered degradation in primary neurons. Overall, our data links ALS/FTD-causing mutations in CCNF to converging pathological features of ALS/FTD and provides a link between defective protein degradation systems and the pathological accumulation of a protein involved in RNA processing and metabolism.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cyclins/genetics , Frontotemporal Dementia/genetics , PTB-Associated Splicing Factor/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , HEK293 Cells , Humans , Protein Aggregates/genetics , Protein Interaction Maps/genetics , Proteolysis , RNA/genetics , RNA/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA-Binding Proteins/genetics
4.
Neuropathol Appl Neurobiol ; 49(4): e12931, 2023 08.
Article in English | MEDLINE | ID: mdl-37565253

ABSTRACT

BACKGROUND: Reduced folate status and elevated levels of circulating homocysteine are modifiable risk factors for cognitive decline and dementia. Disturbances in one-carbon metabolism are associated with the pathological accumulation of phosphorylated tau, a hallmark feature of prevalent dementia, including Alzheimer's disease and subgroups of frontotemporal dementia. METHODS: Here, using transgenic TAU58/2 mouse models of human tauopathy, we tested whether dietary supplementation with L-methylfolate (the active folate form), choline and betaine can reduce tau phosphorylation and associated behavioural phenotypes. RESULTS: TAU58/2 mice fed with the methyl donor-enriched diet showed reduced phosphorylation of tau at the pathological S202 (CP13) and S396/S404 (PHF-1) epitopes and alleviation of associated motor and learning deficits. Compared with mice on the control diet, the decrease in cortical phosphorylated tau levels in mice fed with the methyl donor-enriched diet was associated with enhanced methylation of protein phosphatase 2A, the major brain tau Ser/Thr phosphatase. It also correlated with a reduction in protein levels of Fyn, a tau tyrosine kinase that plays a central role in mediating pathological tau-induced neurodegeneration. Conversely, Fyn expression levels were increased in mice with deficiencies in folate metabolism. CONCLUSIONS: Our findings provide the first experimental evidence that boosting one-carbon metabolism with L-methylfolate, choline and betaine can mitigate key pathological, learning and motor deficits in a tauopathy mouse model. They give support to using a combination of methyl donors as a preventive or disease-modifying strategy for tauopathies.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Humans , Animals , Protein Phosphatase 2/metabolism , tau Proteins/metabolism , Betaine , Tauopathies/pathology , Mice, Transgenic , Alzheimer Disease/metabolism , Phosphorylation , Disease Models, Animal , Folic Acid , Choline , Dietary Supplements , Carbon
5.
Neuropathol Appl Neurobiol ; 49(2): e12902, 2023 04.
Article in English | MEDLINE | ID: mdl-36951214

ABSTRACT

AIMS: Amyotrophic lateral sclerosis (ALS) is characterised by a progressive loss of upper and lower motor neurons leading to muscle weakness and eventually death. Frontotemporal dementia (FTD) presents clinically with significant behavioural decline. Approximately 10% of cases have a known family history, and disease-linked mutations in multiple genes have been identified in FTD and ALS. More recently, ALS and FTD-linked variants have been identified in the CCNF gene, which accounts for an estimated 0.6% to over 3% of familial ALS cases. METHODS: In this study, we developed the first mouse models expressing either wild-type (WT) human CCNF or its mutant pathogenic variant S621G to recapitulate key clinical and neuropathological features of ALS and FTD linked to CCNF disease variants. We expressed human CCNF WT or CCNFS621G throughout the murine brain by intracranial delivery of adeno-associated virus (AAV) to achieve widespread delivery via somatic brain transgenesis. RESULTS: These mice developed behavioural abnormalities, similar to the clinical symptoms of FTD patients, as early as 3 months of age, including hyperactivity and disinhibition, which progressively deteriorated to include memory deficits by 8 months of age. Brains of mutant CCNF_S621G mice displayed an accumulation of ubiquitinated proteins with elevated levels of phosphorylated TDP-43 present in both CCNF_WT and mutant CCNF_S621G mice. We also investigated the effects of CCNF expression on interaction targets of CCNF and found elevated levels of insoluble splicing factor proline and glutamine-rich (SFPQ). Furthermore, cytoplasmic TDP-43 inclusions were found in both CCNF_WT and mutant CCNF_S621G mice, recapitulating the key hallmark of FTD/ALS pathology. CONCLUSIONS: In summary, CCNF expression in mice reproduces clinical presentations of ALS, including functional deficits and TDP-43 neuropathology with altered CCNF-mediated pathways contributing to the pathology observed.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Animals , Mice , Infant , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/pathology , Motor Neurons/pathology , Mutation , DNA-Binding Proteins/metabolism , Cyclins/genetics , Cyclins/metabolism
6.
Acta Neuropathol ; 146(3): 395-414, 2023 09.
Article in English | MEDLINE | ID: mdl-37354322

ABSTRACT

Microtubule-associated protein tau (MAPT) aggregates in neurons, astrocytes and oligodendrocytes in a number of neurodegenerative diseases, including progressive supranuclear palsy (PSP). Tau is a target of therapy and the strategy includes either the elimination of pathological tau aggregates or reducing MAPT expression, and thus the amount of tau protein made to prevent its aggregation. Disease-associated tau affects brain regions in a sequential manner that includes cell-to-cell spreading. Involvement of glial cells that show tau aggregates is interpreted as glial cells taking up misfolded tau assuming that glial cells do not express enough MAPT. Although studies have evaluated MAPT expression in human brain tissue homogenates, it is not clear whether MAPT expression is compromised in cells accumulating pathological tau. To address these perplexing aspects of disease pathogenesis, this study used RNAscope combined with immunofluorescence (AT8), and single-nuclear(sn) RNAseq to systematically map and quantify MAPT expression dynamics across different cell types and brain regions in controls (n = 3) and evaluated whether tau cytopathology affects MAPT expression in PSP (n = 3). MAPT transcripts were detected in neurons, astrocytes and oligodendrocytes, and varied between brain regions and within each cell type, and were preserved in all cell types with tau aggregates in PSP. These results propose a complex scenario in all cell types, where, in addition to the ingested misfolded tau, the preserved cellular MAPT expression provides a pool for local protein production that can (1) be phosphorylated and aggregated, or (2) feed the seeding of ingested misfolded tau by providing physiological tau, both accentuating the pathological process. Since tau cytopathology does not compromise MAPT gene expression in PSP, a complete loss of tau protein expression as an early pathogenic component is less likely. These observations provide rationale for a dual approach to therapy by decreasing cellular MAPT expression and targeting removal of misfolded tau.


Subject(s)
Supranuclear Palsy, Progressive , tau Proteins , Humans , tau Proteins/genetics , tau Proteins/metabolism , Supranuclear Palsy, Progressive/pathology , Cytology , Neuroglia/pathology , Neurons/pathology , Gene Expression
7.
Neurochem Res ; 48(4): 1222-1232, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35930103

ABSTRACT

Astrocytes are a major class of glial cell in the central nervous system that have a diverse range of types and functions thought to be based on their anatomical location, morphology and cellular properties. Recent studies highlight that astrocyte dysfunction contributes to the pathogenesis of neurological conditions. However, few studies have described the pattern, distribution and density of astrocytes in the adult human cortex. This study mapped the distribution and density of astrocytes immunolabelled with a range of cytoskeletal and membrane markers in the human frontal cortex. Distinct and overlapping astrocyte populations were determined. The frontal cortex from ten normal control cases (75 ± 9 years) was immunostained with glial fibrillary acidic protein (GFAP), aldehyde dehydrogenase-1 L1 (ALDH1L1), connexin-43 (Cx43), aquaporin-4 (AQP4), and glutamate transporter 1 (GLT-1). All markers labelled populations of astrocytes in the grey and white matter, separate cortical layers, subpial and perivascular regions. All markers were informative for labelling different cellular properties and cellular compartments of astrocytes. ALDH1L1 labelled the largest population of astrocytes, and Cx43-immunopositive astrocytes were found in all cortical layers. AQP4 and GLT-1 labelled distal astrocytic process and end-feet in the same population of astrocytes (98% of GLT-1-immunopositive astrocytes contained AQP4). In contrast, GFAP, the most widely used marker, predominantly labelled astrocytes in superficial cortical layers. This study highlights the diversity of astrocytes in the human cortex, providing a reference map of the distribution of distinct and overlapping astrocyte populations which can be used for comparative purposes in various disease, inflammatory and injury states involving astrocytes.


Subject(s)
Astrocytes , White Matter , Adult , Humans , Astrocytes/metabolism , Connexin 43/metabolism , Neuroglia/metabolism , Aquaporin 4/metabolism , White Matter/metabolism , Glial Fibrillary Acidic Protein/metabolism
8.
Brain ; 145(5): 1598-1609, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35202463

ABSTRACT

Frontotemporal dementia refers to a group of neurodegenerative disorders characterized by behaviour and language alterations and focal brain atrophy. Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by loss of motor neurons resulting in muscle wasting and paralysis. Frontotemporal dementia and amyotrophic lateral sclerosis are considered to exist on a disease spectrum given substantial overlap of genetic and molecular signatures. The predominant genetic abnormality in both frontotemporal dementia and amyotrophic lateral sclerosis is an expanded hexanucleotide repeat sequence in the C9orf72 gene. In terms of brain pathology, abnormal aggregates of TAR-DNA-binding protein-43 are predominantly present in frontotemporal dementia and amyotrophic lateral sclerosis patients. Currently, sensitive and specific diagnostic and disease surveillance biomarkers are lacking for both diseases. This has impeded the capacity to monitor disease progression during life and the development of targeted drug therapies for the two diseases. The purpose of this review is to examine the status of current biofluid biomarker discovery and development in frontotemporal dementia and amyotrophic lateral sclerosis. The major pathogenic proteins implicated in different frontotemporal dementia and amyotrophic lateral sclerosis molecular subtypes and proteins associated with neurodegeneration and the immune system will be discussed. Furthermore, the use of mass spectrometry-based proteomics as an emerging tool to identify new biomarkers in frontotemporal dementia and amyotrophic lateral sclerosis will be summarized.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Neurodegenerative Diseases , Pick Disease of the Brain , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Humans , Neurodegenerative Diseases/pathology
9.
J Labelled Comp Radiopharm ; 66(9): 237-248, 2023 07.
Article in English | MEDLINE | ID: mdl-37002811

ABSTRACT

Trans-blood-brain barrier (BBB) delivery of therapeutic and diagnostic agents is a major challenge in the development of central nervous system (CNS) targeted radiopharmaceuticals. This review is an introduction to the use of peptides as delivery agents to transport cargos into the CNS. The most widely used BBB-penetrating peptides are reviewed here, with a particular emphasis on the broad range of cargos delivered into the CNS using these. Cell-penetrating peptides (CPPs) have been deployed as trans-BBB delivery agents for some time; new developments in the CPP field offer exciting opportunities for the design of next generation trans-BBB complexes. Many of the peptides highlighted here are ready to be combined with diagnostic and therapeutic radiopharmaceuticals to develop highly effective CNS-targeted agents.


Subject(s)
Blood-Brain Barrier , Cell-Penetrating Peptides , Radiopharmaceuticals , Drug Delivery Systems , Biological Transport , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/therapeutic use
10.
Acta Neuropathol ; 144(4): 637-650, 2022 10.
Article in English | MEDLINE | ID: mdl-35780436

ABSTRACT

In Alzheimer's disease (AD), where amyloid-ß (Aß) and tau deposits in the brain, hyperexcitation of neuronal networks is an underlying disease mechanism, but its cause remains unclear. Here, we used the Collaborative Cross (CC) forward genetics mouse platform to identify modifier genes of neuronal hyperexcitation. We found LAMP5 as a novel regulator of hyperexcitation in mice, critical for the survival of distinct interneuron populations. Interestingly, synaptic LAMP5 was lost in AD brains and LAMP5 interneurons degenerated in different AD mouse models. Genetic reduction of LAMP5 augmented functional deficits and neuronal network hypersynchronicity in both Aß- and tau-driven AD mouse models. To this end, our work defines the first specific function of LAMP5 interneurons in neuronal network hyperexcitation in AD and dementia with tau pathology.


Subject(s)
Alzheimer Disease , Lysosomal Membrane Proteins/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/physiology , Animals , Disease Models, Animal , Interneurons/pathology , Mice , Mice, Transgenic , Neurons/pathology , tau Proteins/genetics
11.
Neurochem Res ; 47(7): 1972-1984, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35357600

ABSTRACT

The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.


Subject(s)
Aspartate-tRNA Ligase , Demyelinating Diseases , Animals , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/metabolism , Child, Preschool , Humans , Mice , Mutation , Phenotype
12.
Biochem J ; 478(7): 1471-1484, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33769438

ABSTRACT

Tau pathology initiates in defined brain regions and is known to spread along neuronal connections as symptoms progress in Alzheimer's disease (AD) and other tauopathies. This spread requires the release of tau from donor cells, but the underlying molecular mechanisms remained unknown. Here, we established the interactome of the C-terminal tail region of tau and identified syntaxin 8 (STX8) as a mediator of tau release from cells. Similarly, we showed the syntaxin 6 (STX6), part of the same SNARE family as STX8 also facilitated tau release. STX6 was previously genetically linked to progressive supranuclear palsy (PSP), a tauopathy. Finally, we demonstrated that the transmembrane domain of STX6 is required and sufficient to mediate tau secretion. The differential role of STX6 and STX8 in alternative secretory pathways suggests the association of tau with different secretory processes. Taken together, both syntaxins, STX6 and STX8, may contribute to AD and PSP pathogenesis by mediating release of tau from cells and facilitating pathology spreading.


Subject(s)
Alzheimer Disease/pathology , Protein Interaction Domains and Motifs , Qa-SNARE Proteins/metabolism , Secretory Pathway , Tauopathies/pathology , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Brain/metabolism , Brain/pathology , Humans , Protein Binding , Qa-SNARE Proteins/genetics , Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics
13.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499097

ABSTRACT

The use of cellular models is a common means to investigate the potency of therapeutics in pre-clinical drug discovery. However, there is currently no consensus on which model most accurately replicates key aspects of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) pathology, such as accumulation of insoluble, cytoplasmic transactive response DNA-binding protein (TDP-43) and the formation of insoluble stress granules. Given this, we characterised two TDP-43 proteinopathy cellular models that were based on different aetiologies of disease. The first was a sodium arsenite-induced chronic oxidative stress model and the second expressed a disease-relevant TDP-43 mutation (TDP-43 M337V). The sodium arsenite model displayed most aspects of TDP-43, stress granule and ubiquitin pathology seen in human ALS/FTD donor tissue, whereas the mutant cell line only modelled some aspects. When these two cellular models were exposed to small molecule chemical probes, different effects were observed across the two models. For example, a previously disclosed sulfonamide compound decreased cytoplasmic TDP-43 and increased soluble levels of stress granule marker TIA-1 in the cellular stress model without impacting these levels in the mutant cell line. This study highlights the challenges of using cellular models in lead development during drug discovery for ALS and FTD and reinforces the need to perform assessments of novel therapeutics across a variety of cell lines and aetiological models.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , TDP-43 Proteinopathies/genetics , Drug Discovery
14.
Biochem Cell Biol ; 99(5): 606-616, 2021 10.
Article in English | MEDLINE | ID: mdl-33794133

ABSTRACT

The microtubule-associated protein tau is a key factor in neurodegenerative proteinopathies and is predominantly found in neuronal axons. However, somatodendritic localization of tau occurs in a subset of pathological and physiological tau. Dendritic tau can localize to post-synapses where it interacts with proteins of the post-synaptic density (PSD) protein PSD-95, a membrane-associated guanylate kinase (MAGUK) scaffold factor for organization of protein complexes within the PSD, to mediate downstream signals. However, the molecular details of this interaction remain unclear. Here, we used interaction mapping in cultured cells to demonstrate that tau interacts with the guanylate kinase (GUK) domain in the C-terminal region of PSD-95. The PSD-95 GUK domain is required for a complex with full-length human tau. Mapping the interaction of the MAGUK core with tau revealed that the microtubule binding repeats 2 and 3 and the proline-rich region contributes to this interaction, while the N- and C-terminal regions of tau inhibit interaction. These results reveal the intramolecular determinants of the protein complex of tau and PSD-95 and increase our understanding of tau interactions regulating neurotoxic signaling at the molecular level.


Subject(s)
Disks Large Homolog 4 Protein/metabolism , Guanylate Kinases/metabolism , Microtubules/metabolism , Proline/metabolism , tau Proteins/metabolism , Cells, Cultured , HEK293 Cells , Humans , Protein Binding
15.
Am J Pathol ; 190(8): 1713-1722, 2020 08.
Article in English | MEDLINE | ID: mdl-32371051

ABSTRACT

Amyotrophic lateral sclerosis is a rapidly progressing and fatal disease characterized by muscular atrophy due to loss of upper and lower motor neurons. Pathogenic mutations in the TARDBP gene encoding TAR DNA binding protein-43 (TDP-43) have been identified in familial amyotrophic lateral sclerosis. We have previously reported transgenic mice with neuronal expression of human TDP-43 carrying the pathogenic A315T mutation (iTDP-43A315T mice) using a tetracycline-controlled inducible promotor system. Constitutive expression of transgenic TDP-43A315T in the absence of doxycycline resulted in pronounced early-onset and progressive neurodegeneration, and motor and memory deficits. Here, delayed transgene expression of TDP-43A315T by oral doxycycline treatment of iTDP-43A315T mice from birth till weaning was analyzed. After doxycycline withdrawal, transgenic TDP-43A315T expression gradually increased and resulted in cytoplasmic TDP-43, widespread ubiquitination, and cortical and hippocampal atrophy. In addition, these mice developed motor and gait deficits with underlying muscle atrophy, similar to that observed in the constitutive iTDP-43A315T mice. Surprisingly, in contrast to the constitutive iTDP-43A315T mice, these mice did not develop astrogliosis. In summary, delayed activation coupled with gradual increase in TDP-43A315T expression in the central nervous system of mature mice resulted in progressive functional deficits with neuron and muscle loss, but in the absence of a glial response. This suggests that astrocytosis does not contribute to functional deficits and neuronal loss upon TDP-43A315T expression in mature mice.


Subject(s)
Brain/metabolism , DNA-Binding Proteins/genetics , Gliosis/pathology , Motor Disorders/genetics , Muscular Atrophy/genetics , Nerve Degeneration/genetics , Animals , Brain/pathology , DNA-Binding Proteins/metabolism , Mice , Mice, Transgenic , Motor Disorders/metabolism , Motor Disorders/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Nerve Degeneration/metabolism , Nerve Degeneration/pathology
16.
Brain ; 143(6): 1889-1904, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32375177

ABSTRACT

Hyperphosphorylation and deposition of tau in the brain characterizes frontotemporal dementia and Alzheimer's disease. Disease-associated mutations in the tau-encoding MAPT gene have enabled the generation of transgenic mouse models that recapitulate aspects of human neurodegenerative diseases, including tau hyperphosphorylation and neurofibrillary tangle formation. Here, we characterized the effects of transgenic P301S mutant human tau expression on neuronal network function in the murine hippocampus. Onset of progressive spatial learning deficits in P301S tau transgenic TAU58/2 mice were paralleled by long-term potentiation deficits and neuronal network aberrations during electrophysiological and EEG recordings. Gene-expression profiling just prior to onset of apparent deficits in TAU58/2 mice revealed a signature of immediate early genes that is consistent with neuronal network hypersynchronicity. We found that the increased immediate early gene activity was confined to neurons harbouring tau pathology, providing a cellular link between aberrant tau and network dysfunction. Taken together, our data suggest that tau pathology drives neuronal network dysfunction through hyperexcitation of individual, pathology-harbouring neurons, thereby contributing to memory deficits.


Subject(s)
Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Frontotemporal Dementia/genetics , Hippocampus/metabolism , Long-Term Potentiation/genetics , Male , Memory Disorders/genetics , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Phosphorylation , Tauopathies/physiopathology
17.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34360544

ABSTRACT

The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43's underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics , Frontotemporal Dementia/pathology , Inflammation/complications , Mutation , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/metabolism , Animals , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Humans , Inflammation/classification
18.
J Neurosci ; 39(48): 9645-9659, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31641049

ABSTRACT

Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid ß (Aß) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aß-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aß content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aß burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aß, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aß and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aß formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aß-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aß burden. Our findings support a model in which Aß-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aß concentration or plaque density.


Subject(s)
Alzheimer Disease/metabolism , Demyelinating Diseases/metabolism , Disease Models, Animal , Hippocampus/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plaque, Amyloid/metabolism , Alzheimer Disease/pathology , Animals , Demyelinating Diseases/pathology , Demyelinating Diseases/prevention & control , Female , Hippocampus/pathology , Male , Mice , Mice, Transgenic , Neuroprotection/physiology , Organ Culture Techniques , Organ Size/physiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Plaque, Amyloid/pathology
19.
J Biol Chem ; 294(38): 14149-14162, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31366728

ABSTRACT

The microtubule-associated protein tau undergoes aberrant modification resulting in insoluble brain deposits in various neurodegenerative diseases, including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal degeneration. Tau aggregates can form in different cell types of the central nervous system (CNS) but are most prevalent in neurons. We have previously recapitulated aspects of human FTD in mouse models by overexpressing mutant human tau in CNS neurons, including a P301S tau variant in TAU58/2 mice, characterized by early-onset and progressive behavioral deficits and FTD-like neuropathology. The molecular mechanisms underlying the functional deficits of TAU58/2 mice remain mostly elusive. Here, we employed functional genomics (i.e. RNAseq) to determine differentially expressed genes in young and aged TAU58/2 mice to identify alterations in cellular processes that may contribute to neuropathy. We identified genes in cortical brain samples differentially regulated between young and old TAU58/2 mice relative to nontransgenic littermates and by comparative analysis with a dataset of CNS cell type-specific genes expressed in nontransgenic mice. Most differentially-regulated genes had known or putative roles in neurons and included presynaptic and excitatory genes. Specifically, we observed changes in presynaptic factors, glutamatergic signaling, and protein scaffolding. Moreover, in the aged mice, expression levels of several genes whose expression was annotated to occur in other brain cell types were altered. Immunoblotting and immunostaining of brain samples from the TAU58/2 mice confirmed altered expression and localization of identified and network-linked proteins. Our results have revealed genes dysregulated by progressive tau accumulation in an FTD mouse model.


Subject(s)
Tauopathies/genetics , Tauopathies/metabolism , tau Proteins/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Disease Models, Animal , Frontotemporal Dementia/genetics , Gene Expression Regulation/genetics , Humans , Mice , Mice, Transgenic , Neurons/metabolism , Sequence Analysis, RNA/methods , Tauopathies/physiopathology , tau Proteins/metabolism
20.
Acta Neuropathol ; 140(3): 279-294, 2020 09.
Article in English | MEDLINE | ID: mdl-32725265

ABSTRACT

Hyperphosphorylation of the neuronal tau protein contributes to Alzheimer's disease (AD) by promoting tau pathology and neuronal and cognitive deficits. In contrast, we have previously shown that site-specific tau phosphorylation can inhibit toxic signals induced by amyloid-ß (Aß) in mouse models. The post-synaptic mitogen-activated protein (MAP) kinase p38γ mediates this site-specific phosphorylation on tau at Threonine-205 (T205). Using a gene therapeutic approach, we draw on this neuroprotective mechanism to improve memory in two Aß-dependent mouse models of AD at stages when advanced memory deficits are present. Increasing activity of post-synaptic kinase p38γ that targets T205 in tau reduced memory deficits in symptomatic Aß-induced AD models. Reconstitution experiments with wildtype human tau or phosphorylation-deficient tauT205A showed that T205 modification is critical for downstream effects of p38γ that prevent memory impairment in APP-transgenic mice. Furthermore, genome editing of the T205 codon in the murine Mapt gene showed that this single side chain in endogenous tau critically modulates memory deficits in APP-transgenic Alzheimer's mice. Ablating the protective effect of p38γ activity by genetic p38γ deletion in a tau transgenic mouse model that expresses non-pathogenic tau rendered tau toxic and resulted in impaired memory function in the absence of human Aß. Thus, we propose that modulating neuronal p38γ activity serves as an intrinsic tau-dependent therapeutic approach to augment compromised cognition in advanced dementia.


Subject(s)
Alzheimer Disease/metabolism , Cognition Disorders/metabolism , Memory Disorders/metabolism , tau Proteins/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Cognition Disorders/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Memory/physiology , Memory Disorders/genetics , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL