Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396724

ABSTRACT

The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.


Subject(s)
Chlamydia Infections , Single-Domain Antibodies , Humans , Mice , Animals , Female , Epitopes , Type III Secretion Systems , Chlamydia trachomatis , Antibodies, Bacterial
2.
Biochemistry (Mosc) ; 88(8): 1105-1115, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37758310

ABSTRACT

It is known that the saturation ratio of transferrin (Tf) with iron in human blood is an important clinical parameter. Specific antibodies can be used to analyze subtle changes in the relative abundance of different forms of transferrin potentially associated with a pathological process. Recently, the authors of this study were able to obtain and characterize highly specific single-domain antibodies (nanobodies) that predominantly recognize the iron-saturated (holo-Tf) or iron-unsaturated (apo-Tf) form of transferrin. In this work, under conditions closer to physiological than in the previous experiments, we further demonstrated that these unique nanobodies have extremely high differential binding specificity for different forms of Tf in different human biological fluids. Using these nanobodies, we were able to analyze for the first time relative abundance of the transferrin forms in urine samples from the patients with bladder cancer (BC). We have shown that increase in the concentration of total Tf in the urine samples normalized for creatinine is associated with the degree of progress and growth of malignancy of BC. In the samples of healthy donors and in the early stages of BC (G1), Tf is detected in much smaller amounts (compared to the later stages) and only with additional concentration of the studied samples. For most of the studied urine samples from the BC patients, it is expected (as previously shown in the case of Tf in the blood of terminal ovarian cancer patients) that the concentration of apo-Tf is clearly higher than holo-Tf, especially in the case of the most advanced muscle-invasive BC. It was a surprise for us that approximately equal amounts of apo-Tf and holo-Tf were found in the urine samples of some patients with BC. We hypothesized that the holo-Tf fraction in this case could be largely represented by the "secondary complexes" formed by apo-Tf in combination with ions other than Fe3+, which accumulate in the urine of some cancer patients and are able to bind to apo-Tf, changing its conformation towards holo-Tf. By using inductively coupled plasma mass spectroscopy (ICP-MS), we obtained first results confirming our hypothesis. Preparation of the holo-Tf in these urine samples was found to be highly enriched in zinc and nickel. Also, relative enrichment in cadmium has been observed in this preparation, but at much lower concentrations. The obtained data indicate that the used nanobody, while recognizing predominantly the iron-saturated form of transferrin (holo-Tf), is also capable of binding transferrin in association with other metal ions that are different from iron. This ability could potentially open up new possibilities for investigation of relative abundance of various metal ions in association with transferrin in human biological fluids in normal and pathological conditions.

3.
Biochemistry (Mosc) ; 87(12): 1679-1688, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36717456

ABSTRACT

Due to its unique structure and properties, human breast milk lactoferrin (hLF) has many nutritional and health-promoting functions in infants, including protection against inflammation and bacterial infections. The lack of LF in breastmilk or formula can result in the weakening of the infant's immune system. Noncompetitive polarization fluorescence immunoassay (FPIA) is a promising method for hLF quantification in milk and dairy products, which does not require the separation of the bound and free protein and allows to avoid time-consuming sample preparation. The use of fluorescently labeled single-domain camelid antibodies (nanobodies) for protein recognition in FPIA makes it possible to quantify relatively large antigens, in particular, hLF. In this work, we used previously obtained fluorescein isothiocyanate (FITC)-conjugated anti-hLF5 and anti-hLF16 nanobodies, which selectively recognized two different human lactoferrin epitopes, but did not bind to goat lactoferrin. The kinetics of hLF interaction with the FITC-labeled nanobodies was studied. The dissociation constant (KD) for the anti-LF5 and antiLF16 nanobodies was 3.2 ± 0.3 and 4.9 ± 0.4 nM, respectively, indicating the high-affinity binding of these nanobodies to hLF. We developed the FPIA protocol and determined the concentration of FITC-labeled anti-hLF5 and anti-hLF16 nanobodies that provided the optimal fluorescence signal and stable fluorescence polarization value. We also studied the dependence of fluorescence polarization on the hLF concentration in the noncompetitive FPIA with FITC-anti-hLF5 nanobody. The detection limit for hLF was 2.1 ± 0.2 µg/ml and the linear range for determining the hLF concentration was 3-10 µg/ml. FPIA is commonly used to assay low-molecular-weight substances; however, the use of fluorescently labeled nanobodies allows quantification of high-molecular-weight proteins. Here, we demonstrated that FPIA with fluorescently labeled nanobodies can be used for hLF quantification in milk.


Subject(s)
Single-Domain Antibodies , Female , Humans , Animals , Single-Domain Antibodies/analysis , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/metabolism , Fluorescence Polarization Immunoassay/methods , Lactoferrin/analysis , Lactoferrin/chemistry , Lactoferrin/metabolism , Milk/chemistry , Milk/metabolism , Fluorescein-5-isothiocyanate , Fluorescein/chemistry
4.
J Clin Med ; 11(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555993

ABSTRACT

(1) Background: There are no reliable and widely available markers of functional iron deficiency (FID) in cancer. The aim of the study was to evaluate the role of transferrin (Tf) as a marker of cancer of the ovary (CrO) and related FID. (2) Methods: The study groups consisted of 118 patients with CrO and 69 control females. Blood serum iron status was determined on a Beckman Coulter AU (USA) analyzer. Tf quantification was performed by immunoturbidimetry. The relative contents of apo- and holo-Tf (iron-free and iron-saturated Tf, respectively) were determined in eight patients and a control female by immunochromatographic analysis based on the use of monoclonal single-domain antibodies (nanobodies). (3) Results: Four groups of patients with different iron statuses were selected according to ferritin and transferrin saturation values: absolute iron deficiency (AID) (n = 42), FID (n = 70), iron overload (n = 4), normal iron status (n = 2). The groups differed significantly in Tf values (p < 0.0001). Lower values of Tf were associated with FID. Furthermore, FID is already found in the initial stages of CrO (26%). Immunosorbents based on nanobodies revealed the accumulation of apo-Tf and the decrease in holo-Tf in patients with CrO. (4) Conclusions: Tf may be a promising tool for diagnosing both CrO and associated FID.

5.
Gen Physiol Biophys ; 27(4): 284-90, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19202202

ABSTRACT

Lithium, capable of replacing Na+ in various membrane transport processes, was used to investigate Na+ transport pathways across the lamprey erythrocytes membrane. The values of Li+ influxes have ranged from 8 to 24 mmol/l cells/h. Intracellular accumulation of Li+ was associated with loss of cellular Na+, the value of which was less than the value of Li+ influx. Both Li+ influx and Na+ efflux were partially inhibited by amiloride. The amiloride-sensitive Li+ influx was considerably stimulated by hyperosmotic cell shrinkage. The treatment of lamprey erythrocytes with blockers of protein phosphatases (fluoride and cantharidin) also resulted in a considerable increase in Li+ accumulation within the cells. No significant difference was observed between the values of Li+ and Na+ (22Na) influxes measured in red cells incubated simultaneously in isotonic LiCl and NaCl media (9.2 +/- 2.1 and 7.8 +/- 1.3 mmol/l cells/h, respectively). In hypo- and hypertonic media, however, the rate of Na+ influx in lamprey erythrocytes was approximately twice higher as compared to the rate of Li+ influx, what was determined by the difference in the amiloride-sensitive components. In acidified lamprey erythrocytes (intracellular pH 6.0) Li+ and Na+ influxes were considerably increased due to activation of amiloride-sensitive Na+/H+ (Li+/H+) exchange mechanism, although the activity of Na+/H+ exchange was much greater than that of Li+/H+ exchange. The data obtained confirm the hypothesis on the presence of two amiloride-sensitive systems of Na+ transport in the lamprey red blood cells.


Subject(s)
Erythrocyte Membrane/physiology , Lampreys/physiology , Lithium/metabolism , Sodium/metabolism , Amiloride/pharmacology , Animals , Antiporters/physiology , Biological Transport, Active , Cantharidin/pharmacology , Cations, Monovalent , Erythrocyte Membrane/drug effects , Hydrogen-Ion Concentration
6.
Biochim Biophys Acta ; 1762(1): 59-65, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16216474

ABSTRACT

Possible association between the C282Y and H63D mutations in the HFE gene and estrogen-dependent cancer risk was assessed. Genotyping was performed using PCR amplification followed by digestion of products with specific restrictases. In a population of 260 healthy women (permanent residents of the southwest European Russia), mutant allele frequencies at the C282Y and H63D sites were evaluated as 3.3 and 16.3%, respectively. In patients with breast, ovarian, and endometrial cancer, C282Y frequencies were also low (1.0, 1.3, and 3.8%, respectively), and no cancer risk associated with the C282Y mutation was found. Odds ratios for breast cancer risk associated with the H63D mutation increased significantly with age: 0.5 in women below 48 years old, 1.0 in a range of 48-57 years, and 4.4 in older women (P(trend)=0.002). The latter value was statistically significant (95% CI, 1.4-14.1), indicating that women bearing the H63D mutation may be at an increased breast cancer risk at an age above 57 years. Preliminary results obtained in patients with two other estrogen-dependent malignancies revealed the same tendency to OR increase with age in ovarian cancer patients (P(trend)=0.008), but no age-related OR differences in endometrial cancer patients.


Subject(s)
Estrogens/metabolism , Histocompatibility Antigens Class I/genetics , Membrane Proteins/genetics , Mutation/genetics , Neoplasms/genetics , Adult , Age Distribution , Aged , Female , Genotype , Health , Hemochromatosis Protein , Humans , Middle Aged , Neoplasms/metabolism , Russia
7.
Article in English | MEDLINE | ID: mdl-28163253

ABSTRACT

The work examined the effects of Ca2+ overload and oxidative damage on erythrocytes of river lamprey Lampetra fluvialtilis. The cells were incubated for 3h with 0.1-5µM Ca2+ ionophore ionomycin in combination with 2.5mM Ca2+ and 10-100µM pro-oxidant agent tert-butyl hydroperoxide (tBHP). The sensitivity of lamprey RBCs to studied compounds was evaluated by the kinetics of their death. Both toxicants induced dose- and time dependent phosphatidylserine (PS) externalization (annexin V-FITC labeling) and loss of membrane integrity (propidium iodide uptake). Highest doses of ionomycin (1-2µM) increased the number of PS-exposed erythrocytes to 7-9% within 3h, while 100µM tBHP produced up to 50% of annexin V-FITC-positive cells. Caspase inhibitor Boc-D-FMK (50µM), calpain inhibitor PD150606 (10µM) and broad protease inhibitor leupeptin (200µM) did not prevent ionomycin-induced PS externalization, whereas tBHP-triggered apoptosis was blunted by Boc-D-FMK. tBHP-dependent death of lamprey erythrocytes was accompanied by the decrease in relative cell size, loss of cell viability, activation of caspases 9 and 3/7, and loss of mitochondrial membrane potential, but all these processes were partially attenuated by Boc-D-FMK. None of examined death-associated events were observed in ionomycin-treated erythrocytes except activation of caspase-9. Incubation with ionomycin did not alter intracellular K+ and Na+ content, while exposure to tBHP resulted in 80% loss of K+ and 2.8-fold accumulation of Na+. Thus, lamprey erythrocytes appear to be more susceptible to oxidative damage. Ca2+ overload does not activate the cytosolic death pathways in these cells.


Subject(s)
Apoptosis/drug effects , Calcium Ionophores/toxicity , Erythrocytes/drug effects , Ionomycin/toxicity , Oxidants/toxicity , Water Pollutants, Chemical/toxicity , tert-Butylhydroperoxide/toxicity , Animals , Biomarkers/blood , Biomarkers/metabolism , Cell Size , Cell Survival/drug effects , Erythrocytes/cytology , Erythrocytes/metabolism , Female , Kinetics , Lampreys , Male , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Rivers , Russia
8.
Article in English | MEDLINE | ID: mdl-16875859

ABSTRACT

Four structurally different protein phosphatases (PPs) inhibitors - fluoride, calyculin A, okadaic acid and cantharidin--were tested for their ability to modulate unidirectional Na(+) influx in rat red blood cells. Erythrocytes were incubated at 37 degrees C in isotonic and hypertonic media containing 1 mM ouabain and (22)Na in the absence or presence of PP inhibitors. Exposure of the cells to 20 mM fluoride or 50 nM calyculin A for 1 h under isosmotic conditions caused a significant stimulation of Na(+) influx, whereas addition of 200 microM cantharidin or 100 nM okadaic acid had no effect. After 2 h of treatment, however, all these PPs blockers significantly enhanced Na(+) transport in rat erythrocytes. Selective inhibitors of PP-1 and PP-2A types, calyculin A, cantharidin and okadaic acid, produced similar ( approximately 1.2-1.4-fold) stimulatory effects on Na(+) influx in the cells. Activation of Na(+) influx was unchanged with increasing calyculin A concentration from 50 to 200 nM. No additive stimulation of Na(+) influx was observed when the cells were treated with combination of 20 mM fluoride and 50 nM calyculin A. Na(+) influx induced by PPs blockers was inhibited by 1 mM amiloride and 200 muM bumetanide approximately in the equal extent, indicating the involvement of Na(+)/H(+) exchange and Na-K-2Cl cotransport in sodium transport through rat erythrocytes membrane. Activation of Na(+) transport in the cells induced by calyculin A and fluoride was associated with increase of intracellular Na(+) content. Shrinkage of the rat erythrocytes resulted in 2-fold activation of Na(+) influx. All tested PPs inhibitors additionally activated the Na(+) influx by 70-100% above basal shrinkage-induced level. Amiloride and bumetanide have diminished both the shrinkage-induced and PPs-inhibitors-induced Na(+) influxes. Thus, our observations clearly indicate that activities of Na(+)/H(+) exchanger and Na-K-2Cl cotransporter in rat erythrocytes are regulated by protein phosphatases and stimulated when protein dephosphorylation is inhibited.


Subject(s)
Enzyme Inhibitors/pharmacology , Erythrocytes/metabolism , Phosphoprotein Phosphatases/antagonists & inhibitors , Sodium-Hydrogen Exchangers/metabolism , Amiloride/pharmacology , Animals , Cantharidin/pharmacology , Erythrocytes/enzymology , Ion Transport/drug effects , Male , Marine Toxins , Okadaic Acid/pharmacology , Oxazoles/pharmacology , Phosphoprotein Phosphatases/metabolism , Rats , Rats, Wistar , Sodium Fluoride/pharmacology , Sodium-Potassium-Chloride Symporters/metabolism , Solute Carrier Family 12, Member 1
9.
PLoS One ; 11(3): e0150958, 2016.
Article in English | MEDLINE | ID: mdl-26962869

ABSTRACT

Developing pathogen-specific recombinant antibody fragments (especially nanobodies) is a very promising strategy for the treatment of infectious disease. Nanobodies have great potential for gene therapy application due to their single-gene nature. Historically, Mycoplasma hominis has not been considered pathogenic bacteria due to the lack of acute infection and partially due to multiple studies demonstrating high frequency of isolation of M. hominis samples from asymptomatic patients. However, recent studies on the role of latent M. hominis infection in oncologic transformation, especially prostate cancer, and reports that M. hominis infects Trichomonas and confers antibiotic resistance to Trichomonas, have generated new interest in this field. In the present study we have generated specific nanobody against M. hominis (aMh), for which the identified target is the ABC-transporter substrate-binding protein. aMh exhibits specific antibacterial action against M. hominis. In an attempt to improve the therapeutic properties, we have developed the adenoviral vector-based gene therapy approach for passive immunization with nanobodies against M. hominis. For better penetration into the mucous layer of the genital tract, we fused aMh with the Fc-fragment of IgG. Application of this comprehensive approach with a single systemic administration of recombinant adenovirus expressing aMh-Fc demonstrated both prophylactic and therapeutic effects in a mouse model of genital M. hominis infection.


Subject(s)
Adenoviridae , Antibodies, Bacterial/immunology , Genetic Vectors , Immunization, Passive , Immunoglobulin Fc Fragments/immunology , Mycoplasma Infections/immunology , Mycoplasma hominis/immunology , Single-Domain Antibodies/immunology , Animals , Antibodies, Bacterial/genetics , Camelus/genetics , Camelus/immunology , Female , Immunoglobulin Fc Fragments/genetics , Male , Mice , Mice, Inbred DBA , Mycoplasma Infections/prevention & control , Single-Domain Antibodies/genetics
10.
Oxid Med Cell Longev ; 2015: 593658, 2015.
Article in English | MEDLINE | ID: mdl-25741405

ABSTRACT

Genes encoding proteins with antioxidant properties may influence susceptibility to endometrial hyperplasia (EH) and endometrial carcinoma (ECa). Patients with EH (n = 89), EH concurrent with ECa (n = 76), ECa (n = 186), and healthy controls (n = 1110) were genotyped for five polymorphic variants in the genes involved in metabolism of lipoproteins (APOE Cys112Arg and Arg158Cys), iron (HFE Cys282Tyr and His63Asp), and catecholamines (COMT Val158Met). Patients and controls were matched by ethnicity (all Caucasians), age, body mass index (BMI), and incidence of hypertension and diabetes. The frequency of the APOE E 2 allele (158Cys) was higher in patients with EH + ECa than in controls (P = 0.0012, P(Bonferroni) = 0.018, OR = 2.58, 95% CI 1.49-4.45). The APOE E 4 allele (112Arg) was more frequently found in patients with EH than in controls and HFE minor allele G (63Asp) had a protective effect in the ECa group, though these results appeared to be nonsignificant after correction for multiple comparisons. The results of the study indicate that E 2 allele might be associated with concurrent occurrence of EH and ECa.


Subject(s)
Apolipoprotein E2/genetics , Aged , Alleles , Body Mass Index , Diabetes Mellitus, Type 2/epidemiology , Endometrial Hyperplasia/genetics , Endometrial Hyperplasia/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Female , Gene Frequency , Genotype , Haplotypes , Hemochromatosis Protein , Histocompatibility Antigens Class I/genetics , Humans , Hypertension/epidemiology , Membrane Proteins/genetics , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide
11.
Antiviral Res ; 97(3): 245-54, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274623

ABSTRACT

This work continues a series of recently published studies that employ recombinant single-domain antibody (sdAb, or nanobody®) generation technologies to battle viruses by a passive immunization approach. As a proof of principle, we describe a modified technique to efficiently generate protective molecules against a particular strain of influenza virus within a reasonably short period of time. This approach starts with the immunization of a camel (Camelus bactrianus) with the specified antigen-enriched material presented in as natural a form as possible. An avian influenza virus A/Mallard/Pennsylvania/10218/84 (H5N2) adapted for mice was used as a model source of antigens for both the immunization and phage display-based selection procedures. To significantly increase activities of initially selected monovalent single-domain antibodies, we propose a new type of sdAb formatting that involves the addition of a special type of coiled-coil sequence, the isoleucine zipper domain (ILZ). Presumably, the ILZ-containing peptides adopt trimeric parallel conformations. After the formatting, the biological activities (virus neutralization) of the initially selected anti-influenza virus (H5N2) sdAbs were significantly increased. Intraperitoneal or intranasal administration of the formatted sdAb at 2h before or 24h after viral challenge specifically protects mice from lethal infection with influenza virus. We hope that the described approach combined with the selection focused on particular conservative epitopes will lead to the generation of sdAb-based molecules protective against a broad spectrum of influenza virus subtypes.


Subject(s)
Antibodies, Viral/immunology , Immunologic Techniques/methods , Influenza A Virus, H5N2 Subtype/physiology , Influenza, Human/prevention & control , Single-Domain Antibodies/immunology , Amino Acid Sequence , Animals , Antibodies, Viral/administration & dosage , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Camelus/genetics , Camelus/immunology , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H5N2 Subtype/drug effects , Influenza A Virus, H5N2 Subtype/genetics , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Structure, Tertiary , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/genetics
12.
Antiviral Res ; 97(3): 318-28, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274786

ABSTRACT

One effective method for the prevention and treatment of influenza infection is passive immunization. In our study, we examined the feasibility of creating an antibody-based preparation with a prolonged protective effect against influenza virus. Single-domain antibodies (sdAbs) specific for influenza virus hemagglutinin were generated. Experiments in mouse models showed 100% survivability for both intranasal sdAbs administration 24h prior to influenza challenge and 24h after infection. sdAb-gene delivery by an adenoviral vector led to gene expression for up to 14days. Protection by a recombinant adenovirus containing the sdAb gene was observed in cases of administration prior to influenza infection (14d-24h). We also demonstrated that the single administration of a combined preparation containing sdAb DNA and protein expanded the protection time window from 14d prior to 48h after influenza infection. This approach and the application of a broad-spectrum sdAbs will allow the development of efficient drugs for the prevention and treatment of viral infections produced by pandemic virus variants and other infections.


Subject(s)
Antibodies, Viral/genetics , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N2 Subtype/immunology , Influenza, Human/prevention & control , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Cell Line , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunization, Passive , Influenza A Virus, H5N2 Subtype/genetics , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL