Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biomacromolecules ; 25(3): 1749-1758, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38236997

ABSTRACT

The antitumor immunity can be enhanced through the synchronized codelivery of antigens and immunostimulatory adjuvants to antigen-presenting cells, particularly dendritic cells (DCs), using nanovaccines (NVs). To study the influence of intracellular vaccine cargo release kinetics on the T cell activating capacities of DCs, we compared stimuli-responsive to nonresponsive polymersome NVs. To do so, we employed "AND gate" multiresponsive (MR) amphiphilic block copolymers that decompose only in response to the combination of chemical cues present in the environment of the intracellular compartments in antigen cross-presenting DCs: low pH and high reactive oxygen species (ROS) levels. After being unmasked by ROS, pH-responsive side chains are exposed and can undergo a charge shift within a relevant pH window of the intracellular compartments in antigen cross-presenting DCs. NVs containing the model antigen Ovalbumin (OVA) and the iNKT cell activating adjuvant α-Galactosylceramide (α-Galcer) were fabricated using microfluidics self-assembly. The MR NVs outperformed the nonresponsive NV in vitro, inducing enhanced classical- and cross-presentation of the OVA by DCs, effectively activating CD8+, CD4+ T cells, and iNKT cells. Interestingly, in vivo, the nonresponsive NVs outperformed the responsive vaccines. These differences in polymersome vaccine performance are likely linked to the kinetics of cargo release, highlighting the crucial chemical requirements for successful cancer nanovaccines.


Subject(s)
Nanovaccines , Vaccines , Animals , Mice , Reactive Oxygen Species , CD8-Positive T-Lymphocytes , Dendritic Cells , Antigens/chemistry , Adjuvants, Immunologic/pharmacology , Vaccines/chemistry , Ovalbumin , Hydrogen-Ion Concentration , Mice, Inbred C57BL
2.
Biomacromolecules ; 25(7): 4192-4202, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38917475

ABSTRACT

The permeability and responsiveness of polymer membranes are absolutely relevant in the design of polymersomes for cargo delivery. Accordingly, we herein correlate the structural features, permeability, and responsiveness of doxorubicin-loaded (DOX-loaded) nonresponsive and stimuli-responsive polymersomes with their in vitro and in vivo antitumor performance. Polymer vesicles were produced using amphiphilic block copolymers containing a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) segment linked to poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA, nonresponsive block), poly[4-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)benzyl methacrylate] [PbAPE, reactive oxygen species (ROS)-responsive block], or poly[2-(diisopropylamino)ethyl methacrylate] (PDPA, pH-responsive block). The PDPA-based polymersomes demonstrated outstanding biological performance with antitumor activity notably enhanced compared to their counterparts. We attribute this behavior to a fast-triggered DOX release in acidic tumor environments as induced by pH-responsive polymersome disassembly at pH < 6.8. Possibly, an insufficient ROS concentration in the selected tumor model attenuates the rate of ROS-responsive vesicle degradation, whereas the nonresponsive nature of the PPPhA block remarkably impacts the performance of such potential nanomedicines.


Subject(s)
Doxorubicin , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Animals , Mice , Cell Membrane Permeability/drug effects , Polymers/chemistry , Polymers/pharmacology , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Carriers/chemistry , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Acrylamides/chemistry , Acrylamides/pharmacology , Hydrogen-Ion Concentration
3.
Biomacromolecules ; 24(5): 2291-2300, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37103908

ABSTRACT

Self-assembled bilayer structures such as those produced from amphiphilic block copolymers (polymersomes) are potentially useful in a wide array of applications including the production of artificial cells and organelles, nanoreactors, and delivery systems. These constructs are of important fundamental interest, and they are also frequently considered toward advances in bionanotechnology and nanomedicine. In this framework, membrane permeability is perhaps the most important property of such functional materials. Having in mind these considerations, we herein report the manufacturing of intrinsically permeable polymersomes produced using block copolymers comprising poly[2-(diisopropylamino)-ethyl methacrylate] (PDPA) as the hydrophobic segment. Although being water insoluble at pH 7.4, its pKa(PDPA) ∼ 6.8 leads to the presence of a fraction of protonated amino groups close to the physiological pH, thus conducting the formation of relatively swollen hydrophobic segments. Rhodamine B-loaded vesicles demonstrated that this feature confers inherent permeability to the polymeric membrane, which can still be modulated to some extent by the solution pH. Indeed, even at higher pH values where the PDPA chains are fully deprotonated, the experiments demonstrate that the membranes remain permeable. While membrane permeability can be, for instance, regulated by introducing membrane proteins and DNA nanopores, examples of membrane-forming polymers with intrinsic permeability have been seldom reported so far, and the possibility to regulate the flow of chemicals in these compartments by tuning block copolymer features and ambient conditions is of due relevance. The permeable nature of PDPA membranes possibly applies to a wide array of small molecules, and these findings can in principle be translocated to a variety of disparate bio-related applications.


Subject(s)
Methacrylates , Polymers , Polymers/chemistry , Methacrylates/chemistry , Drug Carriers/chemistry , Nanomedicine , Permeability
4.
Biomacromolecules ; 21(4): 1437-1449, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32083473

ABSTRACT

The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.


Subject(s)
Doxorubicin , Neoplasms , Animals , Cell Line, Tumor , Drug Carriers , Mice , Micelles , Neoplasms/drug therapy , Reactive Oxygen Species , Tumor Microenvironment
5.
Small ; 14(15): e1703539, 2018 04.
Article in English | MEDLINE | ID: mdl-29493121

ABSTRACT

The activation of tumor-specific effector immune cells is key for successful immunotherapy and vaccination is a powerful strategy to induce such adaptive immune responses. However, the generation of effective anticancer vaccines is challenging. To overcome these challenges, a novel straight-forward strategy of adjuvant-induced tumor antigen assembly to generate nanovaccines with superior antigen/adjuvant loading efficiency is developed. To protect nanovaccines in circulation and to introduce additional functionalities, a biocompatible polyphenol coating is installed. The resulting functionalizable nanovaccines are equipped with a pH (low) insertion peptide (pHLIP) to facilitate endolysosomal escape and to promote cytoplasmic localization, with the aim to enhance cross-presentation of the antigen by dendritic cells to effectively activate CD8+ T cell. The results demonstrate that pHLIP-functionalized model nanovaccine can induce endolysosomal escape and enhance CD8+ T cell activation both in vitro and in vivo. Furthermore, based on the adjuvant-induced antigen assembly, nanovaccines of the clinically relevant tumor-associated antigen NY-ESO-1 are generated and show excellent capacity to elicit NY-ESO-1-specific CD8+ T cell activation, demonstrating a high potential of this functionalizable nanovaccine formulation strategy for clinical applications.


Subject(s)
Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/immunology , Adjuvants, Immunologic , Cell Line , Humans , Kinetics , Lymphocyte Activation/physiology , Polyphenols/chemistry
6.
Langmuir ; 34(5): 2180-2188, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29338258

ABSTRACT

The development of nanovehicles for intracellular drug delivery is strongly bound to the understating and control of nanoparticles cellular uptake process, which in turn is governed by surface chemistry. In this study, we explored the synthesis, characterization, and cellular uptake of block copolymer assemblies consisting of a pH-responsive poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) core stabilized by three different biocompatible hydrophilic shells (a zwitterionic type poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer, a highly hydrated poly(ethylene oxide) (PEO) layer with stealth effect, and an also proven nontoxic and nonimmunogenic poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) layer). All particles had a spherical core-shell structure. The largest particles with the thickest hydrophilic stabilizing shell obtained from PMPC40-b-PDPA70 were internalized to a higher level than those smaller in size and stabilized by PEO or PHPMA and produced from PEO122-b-PDPA43 or PHPMA64-b-PDPA72, respectively. Such a behavior was confirmed among different cell lines, with assemblies being internalized to a higher degree in cancer (HeLa) as compared to healthy (Telo-RF) cells. This fact was mainly attributed to the stronger binding of PMPC to cell membranes. Therefore, cellular uptake of nanoparticles at the sub-100 nm size range may be chiefly governed by the chemical nature of the stabilizing layer rather than particles size and/or shell thickness.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Nanoparticles/chemistry , Polymers/chemistry , Polymers/metabolism , Biocompatible Materials/toxicity , Biological Transport , HeLa Cells , Hemolysis/drug effects , Humans , Polymers/toxicity , Surface Properties
7.
Biomacromolecules ; 19(7): 2443-2458, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29601729

ABSTRACT

Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.


Subject(s)
Antineoplastic Agents/administration & dosage , Nanoparticles/chemistry , Paclitaxel/administration & dosage , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Micelles , Nanoparticles/adverse effects , Nanoparticles/metabolism , Paclitaxel/pharmacokinetics , Polyesters/chemical synthesis , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polypropylenes/chemistry , Succinates/chemistry
8.
Langmuir ; 32(2): 577-86, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26677726

ABSTRACT

The intracellular delivery of nucleic acids requires a vector system as they cannot diffuse across lipid membranes. Although polymeric transfecting agents have been extensively investigated, none of the proposed gene delivery vehicles fulfill all of the requirements needed for an effective therapy, namely, the ability to bind and compact DNA into polyplexes, stability in the serum environment, endosome-disrupting capacity, efficient intracellular DNA release, and low toxicity. The challenges are mainly attributed to conflicting properties such as stability vs efficient DNA release and toxicity vs efficient endosome-disrupting capacity. Accordingly, investigations aimed at safe and efficient therapies are still essential to achieving gene therapy clinical success. Taking into account the mentioned issues, herein we have evaluated the DNA condensation ability of poly(ethylene oxide)113-b-poly[2-(diisopropylamino)ethyl methacrylate]50 (PEO113-b-PDPA50), poly(ethylene oxide)113-b-poly[2-(diethylamino)ethyl methacrylate]50 (PEO113-b-PDEA50), poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly[oligo(ethylene glycol)methyl ether methacrylate10-co-2-(diethylamino)ethyl methacrylate47-co-2-(diisopropylamino)ethyl methacrylate47] (POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47), and poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly{oligo(ethylene glycol)methyl ether methacrylate10-co-2-methylacrylic acid 2-[(2-(dimethylamino)ethyl)methylamino]ethyl ester44} (POEGMA70-b-P(OEGMA10-co-DAMA44). Block copolymers PEO113-b-PDEA50 and POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47) were evidenced to properly condense DNA into particles with a desirable size for cellular uptake via endocytic pathways (R(H) ≈ 65-85 nm). The structure of the polyplexes was characterized in detail by scattering techniques and atomic force microscopy. The isothermal titration calorimetric data revealed that the polymer/DNA binding is endothermic; therefore, the process in entropically driven. The combination of results supports that POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47) condenses DNA more efficiently and with higher thermodynamic outputs than does PEO113-b-PDEA50. Finally, circular dichroism spectroscopy indicated that the conformation of DNA remained the same after complexation and that the polyplexes are very stable in the serum environment.


Subject(s)
DNA/chemistry , Gene Transfer Techniques , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Calorimetry , Endocytosis , Humans , Microscopy, Atomic Force , Nucleic Acid Conformation , Thermodynamics
9.
Langmuir ; 30(32): 9770-9, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25068509

ABSTRACT

The development of nanocarriers for biomedical applications requires that these nanocarriers have special properties, including resistance to nonspecific protein adsorption. In this study, the fouling properties of PLA- and PCL-based block copolymer nanoparticles (NPs) have been evaluated by placing them in contact with model proteins. Block copolymer NPs were produced through the self-assembly of PEOm-b-PLAn and PEOm-b-PCLn. This procedure yielded nanosized objects with distinct structural features dependent on the length of the hydrophobic and hydrophilic blocks and the volume ratio. The protein adsorption events were examined in relation to size, chain length, surface curvature, and hydrophilic chain density. Fouling by BSA and lysozyme was considerably reduced as the length of the hydrophilic PEO-stabilizing shell increases. In contrast to the case of hydrophilic polymer-grafted planar surfaces, the current investigations suggest that the hydrophilic chain density did not markedly influence protein fouling. The protein adsorption took place at the outer surface of the NPs since neither BSA nor lysozyme was able to diffuse within the hydrophilic layer due to geometric restrictions. Protein binding is an exothermic process, and it is modulated mainly by polymer features. The secondary structures of BSA and lysozyme were not affected by the adhesion phenomena.


Subject(s)
Biocompatible Materials/chemistry , Nanoparticles/chemistry , Proteins/chemistry , Adsorption
10.
J Colloid Interface Sci ; 671: 88-99, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38795537

ABSTRACT

Polymersomes are synthetic vesicles with potential use in healthcare, chemical transformations in confined environment (nanofactories), and in the construction of artificial cells and organelles. In this framework, one of the most important features of such supramolecular structures is the permeability behavior allowing for selective control of mass exchange between the inner and outer compartments. The use of biological and synthetic nanopores in this regard is the most common strategy to impart permeability nevertheless, this typically requires fairly complex strategies to enable porosity. Yet, investigations concerning the permeability of polymer vesicles to different analytes still requires further exploration and, taking these considerations into account, we have detailed investigated the permeability behavior of a variety of polymersomes with regard to different analytes (water, protons, and rhodamine B) which were selected as models for solvents, ions, and small molecules. Polymersomes based on hydrophilic blocks of poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) or PEO (poly(ethylene oxide)) linked to the non-responsive blocks poly[N-(4-isopropylphenylacetamide)ethyl methacrylate] (PPPhA) or poly(methyl methacrylate) (PMMA), or to the stimuli pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA) have been investigated. Interestingly, the produced PEO-based vesicles are notably larger than the ones produced using PHPMA-containing block copolymers. The experimental results reveal that all the vesicles are inherently permeable to some extent with permeability behavior following exponential profiles. Nevertheless, polymersomes based on PMMA as the hydrophobic component were demonstrated to be the least permeable to the small molecule rhodamine B as well as to water. The synthetic vesicles based on the pH-responsive PDPA block exhibited restrictive and notably slow proton permeability as attributed to partial chain protonation upon acidification of the medium. The dye permeability was evidenced to be much slower than ion or solvent diffusion, and in the case of pH-responsive assemblies, it was demonstrated to also depend on the ionic strength of the environment. These findings are understood to be highly relevant towards polymer selection for the production of synthetic vesicles with selective and time-dependent permeability, and it may thus contribute in advancing biomimicry and nanomedicine.


Subject(s)
Permeability , Polymers , Rhodamines , Rhodamines/chemistry , Polymers/chemistry , Artificial Cells/chemistry , Particle Size , Hydrophobic and Hydrophilic Interactions , Hydrogen-Ion Concentration , Surface Properties , Water/chemistry
11.
Pharmaceutics ; 15(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37111676

ABSTRACT

This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA-b-PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and 1H NMR spectroscopy, were used to characterize the block copolymers, while 1H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions. The results show that the LCST values for the block copolymers decreased with increasing PLA content in the copolymer. The selected block copolymer presented LCST transitions at physiologically relevant temperatures, making it suitable for manufacturing nanoparticles (NPs) and drug encapsulation-release of the chemotherapeutic paclitaxel (PTX) via temperature-triggered drug release mechanism. The drug release profile was found to be temperature-dependent, with PTX release being sustained at all tested conditions, but substantially accelerated at 37 and 40 °C compared to 25 °C. The NPs were stable under simulated physiological conditions. These findings demonstrate that the addition of hydrophobic monomers, such as PLA, can tune the LCST temperatures of thermo-responsive polymers, and that PLA-b-PTEGMA copolymers have great potential for use in drug and gene delivery systems via temperature-triggered drug release mechanisms in biomedicine applications.

12.
J Colloid Interface Sci ; 635: 406-416, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599239

ABSTRACT

The ability to tune size and morphology of self-assemblies is particularly relevant in the development of delivery systems. By tailoring such structural parameters, one can provide larger cargo spaces or produce nanocarriers that can be loaded by hydrophilic and hydrophobic molecules starting ideally from the same polymer building unit. We herein demonstrate that the morphology of block copolymer-based pH-triggered nanoplatforms produced from poly(2-methyl-2-oxazoline)m-b-poly[2-(diisopropylamino)-ethyl methacrylate]n (PMeOxm-b-PDPAn) is remarkably influenced by the overall molecular weight of the block copolymer, and by the selected method used to produce the self-assemblies. Polymeric vesicles were produced by nanoprecipitation using a block copolymer of relatively low molecular weight (Mn âˆ¼ 10 kg.mol-1). Very exciting though, despite the high hydrophobic weight ratio (wPDPA > 0.70), this method conducted to the formation of core-shell nanoparticles when block copolymers of higher molecular weight were used, thus suggesting that the fast (few seconds) self-assembly procedure is controlled by kinetics rather than thermodynamics. We further demonstrated the formation of vesicular structures using longer chains via the solvent-switch approach when the "switching" to the bad solvent is performed in a time scale of a few hours (approximately 3 hs). We accordingly demonstrate that using fairly simple methods one can easily tailor the morphology of such block copolymer self-assemblies, thereby producing a variety of structurally different pH-triggered nanoplatforms via a kinetic or thermodynamically-controlled process. This is certainly attractive towards the development of nanotechnology-based cargo delivery systems.

13.
PLoS One ; 17(1): e0262484, 2022.
Article in English | MEDLINE | ID: mdl-35007303

ABSTRACT

BACKGROUND: Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. OBJECTIVE: Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. METHODS: Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. RESULTS: Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. CONCLUSIONS: This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.


Subject(s)
Biomarkers/blood , Extracellular Vesicles/metabolism , Myelodysplastic Syndromes/pathology , Proteome/metabolism , Proteomics/methods , Aged , Case-Control Studies , Chromatography, Liquid , Female , Humans , Male , Myelodysplastic Syndromes/metabolism , Proteome/analysis , Tandem Mass Spectrometry
14.
ACS Omega ; 7(47): 42711-42722, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467927

ABSTRACT

Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.

15.
Pharmaceutics ; 14(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35214009

ABSTRACT

Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable. Downstream processes for purification, concentration, and storage of the nanomedicine formulations are equally indispensable. Here, we develop an inline sonication process for the production of polymeric PLGA nanomedicines at the industrial scale. The process and formulation parameters are optimized to obtain PLGA nanoparticles with a mean diameter of 150 ± 50 nm and a small polydispersity index (PDI < 0.2). Downstream processes based on tangential flow filtration (TFF) technology and lyophilization for the washing, concentration, and storage of formulations are also established and discussed. Using the developed manufacturing and downstream processing technologies, production of two PLGA nanoformulations encasing ritonavir and celecoxib was achieved at 84 g/h rate. As a measure of actual drug content, encapsulation efficiencies of 49.5 ± 3.2% and 80.3 ± 0.9% were achieved for ritonavir and celecoxib, respectively. When operated in-series, inline sonication and TFF can be adapted for fully continuous, industrial-scale processing of PLGA-based nanomedicines.

16.
Pharmaceutics ; 14(8)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015316

ABSTRACT

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed. In this paper, we develop an inline sonication process and adapt it to the industrial scale production of immunomodulating PLGA nanovaccines developed using a batch sonication method at the laboratory scale. The investigated formulations contain three distinct synthetic peptides derived from the carcinogenic antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) together with an invariant natural killer T-cell (iNKT) activator, threitolceramide-6 (IMM60). Process parameters were optimized to obtain polymeric nanovaccine formulations with a mean diameter of 150 ± 50 nm and a polydispersity index <0.2. Formulation characteristics, including encapsulation efficiencies, release profiles and in vitro functional and toxicological profiles, are assessed and statistically compared for each formulation. Overall, scale-up formulations obtained by inline sonication method could replicate the colloidal and functional properties of the nanovaccines developed using batch sonication at the laboratory scale. Both types of formulations induced specific T-cell and iNKT cell responses in vitro without any toxicity, highlighting the suitability of the inline sonication method for the continuous scale-up of nanomedicine formulations in terms of efficacy and safety.

17.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35159721

ABSTRACT

Despite the health benefits of the sun, overexposure to solar radiation without proper precautions can cause irreversible damage to exposed skin. In the search for balance between the risks and benefits of exposure to solar radiation in human health, a technological alternative was found, the incorporation of photoprotective products in lipid nanoparticulate systems for topical application. These nanometric systems have demonstrated several advantages when used as adjuvants in photoprotection compared to chemical and/or physical sunscreens alone. The increase in the sun protection factor (SPF), photostability and UV action spectrum are parameters that have benefited from the application of these systems in order to increase the effectiveness and safety of photoprotective formulations containing organic and/or inorganic sunscreens.

18.
Polymers (Basel) ; 13(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062772

ABSTRACT

Here, we report on the construction of biodegradable poly(ethylene oxide monomethyl ether) (MPEO)-b-poly(ε-caprolactone) (PCL) nanoparticles (NPs) having acid-labile (acyclic ketal group) linkage at the block junction. In the presence of acidic pH, the nanoassemblies were destabilized as a consequence of cleaving this linkage. The amphiphilic MPEO-b-PCL diblock copolymer self-assembled in PBS solution into regular spherical NPs. The structure of self-assemble and disassemble NPs were characterized in detail by dynamic (DLS), static (SLS) light scattering, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). The key of the obtained NPs is using them in a paclitaxel (PTX) delivery system and study their in vitro cytostatic activity in a cancer cell model. The acid-labile ketal linker enabled the disassembly of the NPs in a buffer simulating an acidic environment in endosomal (pH ~5.0 to ~6.0) and lysosomal (pH ~4.0 to ~5.0) cell compartments resulting in the release of paclitaxel (PTX) and formation of neutral degradation products. The in vitro cytotoxicity studies showed that the activity of the drug-loaded NPs was increased compared to the free PTX. The ability of the NPs to release the drug at the endosomal pH with concomitant high cytotoxicity makes them suitable candidates as a drug delivery system for cancer therapy.

19.
Adv Healthc Mater ; 10(13): e2100304, 2021 07.
Article in English | MEDLINE | ID: mdl-34050625

ABSTRACT

Anticancer drug delivery strategies are designed to take advantage of the differential chemical environment in solid tumors independently, or to high levels of reactive oxygen species (ROS) or to low pH, compared to healthy tissue. Here, the design and thorough characterization of two functionalizable "AND gate" multiresponsive (MR) block amphiphilic copolymers are reported, aimed to take full advantage of the coexistence of two chemical cues-ROS and low pH-present in the tumor microenvironment. The hydrophobic blocks contain masked pH-responsive side chains, which are exposed exclusively in response to ROS. Hence, the hydrophobic polymer side chains will undergo a charge shift in a very relevant pH window present in the extracellular milieu in most solid tumors (pH 5.6-7.2) after demasking by ROS. Doxorubicin (DOX)-loaded nanosized "AND gate" MR polymersomes (MRPs) are fabricated via microfluidic self-assembly. Chemical characterization reveals ROS-dependent pH sensitivity and accelerated DOX release under influence of both ROS and low pH. Treatment of tumor-bearing mice with DOX-loaded nonresponsive and "AND gate" MRPs dramatically decreases cardiac toxicity. The most optimal "AND gate" MRPs outperform free DOX in terms of tumor growth inhibition and survival, shedding light on chemical requirements for successful cancer nanomedicine.


Subject(s)
Nanomedicine , Nanoparticles , Animals , Doxorubicin/pharmacology , Drug Carriers , Drug Delivery Systems , Hydrogen-Ion Concentration , Mice , Micelles , Oxygen , Reactive Oxygen Species
20.
J Mater Chem B ; 9(8): 2073-2083, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33594396

ABSTRACT

The formation of biomolecular coronas around nanoparticles as soon as they come in contact with biological media is nowadays well accepted. The self-developed biological outer surfaces can affect the targeting capability of the colloidal carriers as well as their cytotoxicity and cellular uptake behavior. In this framework, we explored the structural features and biological consequences of protein coronas around block copolymer assemblies consisting of a common pH-responsive core made by poly[2-(diisopropylamino) ethyl methacrylate] (PDPA) and hydrophilic shells of different chemical natures: zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) or highly hydrophilic poly(ethylene oxide) (PEO) and poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA). We demonstrated the presence of ∼50 nm protein coronas around the nanoparticles regardless of the chemical nature of the polymeric shells. The thickness is understood as the sum of the soft and hard layers and it is the actual interface seen by the cells. Although the soft corona composition is difficult to determine because the proteins are loosely bound to the outer surface of the assemblies, the tightly bound proteins (hard corona) could be identified and quantified. The compositional analysis of the hard corona demonstrated that human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen are the main components of the protein coronas, and serotransferrin is present particularly in the protein corona of the zwitterionic-stabilized assemblies. The protein coronas substantially reduce the cellular uptake of the colloidal particles due to their increased size and the presence of HSA which is known to reduce nanoparticle-cell adhesion. On the other hand, their existence also reduces the levels of cytotoxicity of the polymeric assemblies, highlighting that protein coronas should not be always understood as artifacts that need to be eliminated due to their positive outputs.


Subject(s)
Mechanical Phenomena , Nanoparticles/chemistry , Protein Corona/chemistry , Cell Adhesion , Humans , Hydrogen-Ion Concentration , Polymers/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL