Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Phys Chem Chem Phys ; 24(32): 19452-19462, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35924547

ABSTRACT

Three anthraquinone-based chromophores (9,10-anthraquinone, alizarin, purpurin) are compared from the point of view of their experimental and computed NMR and UV-visible light absorption spectra. Using a hybrid (explicit/implicit) solvent model, each proton chemical shift can be reproduced with an error of less than 7%, even when such protons are engaged in inter-molecular hydrogen bonds with the solvent or when the analyzed sample contains a significant amount of impurities, for instance, 9,10-anthraquinone in purpurin. All the steady-state UV-visible absorption spectra feature a significant vibrational progression in the first absorption band. The shape of the corresponding computed spectra, including vibronic couplings obtained with the adiabatic Hessian approach and the Franck-Condon and Herzberg-Teller approximation of the transition dipole, are in excellent agreement with the experimental ones. The importance and the nature of the vibronic couplings are different for the three molecules, even if they only differ by the number of hydroxyl groups.

2.
Angew Chem Int Ed Engl ; 61(1): e202112108, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34816554

ABSTRACT

Egg-tempera painting is a pictorial technique widely used in the Middle Ages, although poorly studied in its physico-chemical aspects until now. Here we show how NMR relaxometry and rheology can be combined to probe egg-tempera paints and shed new light on their structure and behavior. Based on recipes of the 15th century, model formulations with egg yolk and green earth have been reproduced to characterize the physicochemical properties of this paint at the mesoscopic and macroscopic scales. The rheological measurements highlight a synergetic effect between green earth and egg yolk, induced by the interactions between them and the structural organisation of the system. 1 H NMR relaxometry emphasizes the presence and the structure of a network formed by the yolk and the pigment.

3.
Chemistry ; 25(5): 1275-1285, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30284764

ABSTRACT

Evidence for the formation of linear oligopeptides with nonrandom sequences from mixtures of amino acids coadsorbed on silica and submitted to a simple thermal activation is presented. The amino acid couples (glutamic acid+leucine) and (aspartic acid+valine) were deposited on a fumed silica and submitted to a single heating step at moderate temperature. The evolution of the systems was characterized by X-ray diffraction, infrared spectroscopy, thermosgravimetric analysis, HPLC, and electrospray ionization mass spectrometry (ESI-MS). Evidence for the formation of amide bonds was found in all systems studied. While the products of single amino acids activation on silica could be considered as evolutionary dead ends, (glutamic acid+leucine) and, at to some extent, (aspartic acid+valine) gave rise to the high yield formation of linear peptides up to the hexamers. Oligopeptides of such length have not been observed before in surface polymerization scenarios (unless the amino acids had been deposited by chemical vapor deposition, which is not realistic in a prebiotic environment). Furthermore, not all possible amino acid sequences were present in the activation products, which is indicative of polymerization selectivity. These results are promising for origins of life studies because they suggest the emergence of nonrandom biopolymers in a simple prebiotic scenario.


Subject(s)
Amino Acids/chemistry , Peptides/chemistry , Prebiotics/analysis , Silicon Dioxide/chemistry , Aspartic Acid , Glutamic Acid , Leucine/chemistry , Polymerization , Spectrometry, Mass, Electrospray Ionization , Thermogravimetry , Valine
4.
Angew Chem Int Ed Engl ; 56(27): 7920-7923, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28558156

ABSTRACT

In this contribution, we report the formation under prebiotic conditions of phosphoribosyl pyrophosphate (PRPP) as a molecular precursor in the one-pot synthesis of a canonical nucleotide, namely adenosine monophosphate (AMP) from its building blocks (KH2 PO4 or Pi , adenine, and d-ribose), on a fumed silica surface. The on-the-rocks approach has been successfully applied to the simultaneous phosphorylation and glycosylation of ribose. The one-pot formation mechanism of AMP involves a two-step pathway via an activated intermediate, namely PRPP, obtained by multiple ribose phosphorylations upon mild thermal activation.

5.
Angew Chem Int Ed Engl ; 56(6): 1619-1623, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28067019

ABSTRACT

British 19th century painters such as J. M. W. Turner, commonly modified the properties of their paint by using gels called "gumtions". These gels allowed them to easily tune the paint handling and drying properties. The fascinating properties of these "gumtions" were obtained by adding lead acetate to a ternary system based on mastic resin, linseed oil and turpentine. Herein, we report and investigate in depth the rheological properties of these gels as well as their structure at a molecular and supra-molecular scale.

6.
Chemistry ; 22(44): 15834-15846, 2016 Oct 24.
Article in English | MEDLINE | ID: mdl-27624284

ABSTRACT

Understanding ribose reactivity is a crucial step in the "RNA world" scenario because this molecule is a component of all extant nucleotides that make up RNA. In solution, ribose is unstable and susceptible to thermal destruction. We examined how ribose behaves upon thermal activation when adsorbed on silica, either alone or with the coadsorption of inorganic salts (MgCl2 , CaCl2 , SrCl2 , CuCl2 , FeCl2 , FeCl3 , ZnCl2 ). A combination of 13 C NMR, in situ IR, and TGA analyses revealed a variety of phenomena. When adsorbed alone, ribose remains stable up to 150 °C, at which point ring opening is observed, together with minor oxidation to a lactone. All the metal salts studied showed specific interactions with ribose after dehydration, resulting in the formation of polydentate metal ion complexes. Anomeric equilibria were affected, generally favoring ribofuranoses. Zn2+ stabilized ribose up to higher temperatures than bare silica (180 to 200 °C). Most other cations had an adverse effect on ribose stability, with ring opening already upon drying at 70 °C. In addition, alkaline earth cations catalyzed the dehydration of ribose to furfural and, to variable degrees, its further decarbonylation to furan. Transition-metal ions with open d-shells took part in redox reactions with ribose, either as reagents or as catalysts. These results allow the likelihood of prebiotic chemistry scenarios to be evaluated, and may also be of interest for the valorization of biomass-derived carbohydrates by heterogeneous catalysis.


Subject(s)
Metals/chemistry , Prebiotics , RNA/chemistry , Ribose/chemistry , Salts/chemistry , Silicon Dioxide/chemistry , Catalysis
7.
Langmuir ; 32(4): 997-1008, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26734828

ABSTRACT

The adsorption/interaction of KH2PO4 with solvated (100) and (101) TiO2 anatase surfaces is investigated using periodic DFT calculations in combination with GIPAW NMR calculations and experimental IR and solid state (17)O, and (31)P NMR spectroscopies. A complete and realistic model has been used to simulate the solvent by individual water molecules. The most stable adsorption configurations are characterized theoretically at the atomic scale, and experimentally supported by NMR and IR spectroscopies. It is shown that H2PO4(-) chemisorbs on the (100) and (101) anatase surfaces, preferentially via a bidentate geometry. Dimer (H3P2O7(-)) and trimer (H4P3O10(-)) adsorption models are confronted with monomer adsorption models, in order to rationalize their occurrence.

8.
Environ Sci Technol ; 50(21): 11654-11662, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27712057

ABSTRACT

The uptakes of calcium (Ca), strontium (Sr), and barium (Ba) by two cyanobacterial strains, Cyanothece sp. PCC7425 and Gloeomargarita lithophora, both forming intracellular carbonates, were investigated in laboratory cultures. In the culture medium BG-11 amended with 250 µM Ca and 50 or 250 µM Sr and Ba, G. lithophora accumulated first Ba, then Sr, and finally Ca. Sr and Ba were completely accumulated by G. lithophora cells at rates between 0.02 and 0.10 fmol h-1 cell-1 and down to extracellular concentrations below the detection limits of inductively coupled plasma atomic emission spectroscopy. Accumulation of Sr and Ba did not affect the growth rate of the strain. This sequential accumulation occurred mostly intracellularly within polyphosphate and carbonate granules and resulted in the formation of core-shell structures in carbonates. In contrast, Cyanothece sp. PCC7425 showed neither a preferential accumulation of heavier alkaline earth metals nor core-shell structures in the carbonates. This indicated that fractionation between alkaline earth metals was not inherent to intracellularly calcifying cyanobacteria but was likely a genetically based trait of G. lithophora. Overall, the capability of G. lithophora to sequester preferentially Sr and Ba at high rates may be of considerable interest for designing new remediation strategies and better understanding the geochemical cycles of these elements.


Subject(s)
Barium/chemistry , Metals, Alkaline Earth/chemistry , Carbonates/chemistry , Cyanobacteria , Strontium/chemistry
9.
Chem Soc Rev ; 44(20): 7207-33, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-25983108

ABSTRACT

This review highlights recent developments in the synthesis and unconventional applications of nanosized microporous crystals including framework (zeolites) and layered (clays) type materials. Owing to their microporous nature nanosized zeolites and clays exhibit novel properties, different from those of bulk materials. The factors controlling the formation of nanosized microporous crystals are first revised. The most promising approaches from the viewpoint of large-scale production of nanosized zeolites and clays are discussed in depth. The preparation and advanced applications of nanosized zeolites and clays in free (suspension and powder forms) and fixed (films) forms are summarized. Further the review emphasises the non-conventional applications of new porous materials. A comprehensive analysis of the emerging applications of microporous nanosized crystals in the field of semiconductor industry, optical materials, chemical sensors, medicine, cosmetics, and food industry is presented. Finally, the future needs and perspectives of nanosized microporous materials (zeolites and clays) are addressed.

10.
Angew Chem Int Ed Engl ; 55(48): 15049-15052, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27797136

ABSTRACT

Zeolites are widely used in many commercial processes, mostly as catalysts or adsorbents. Understanding their intimate structure at the nanoscale is the key to control their properties and design the best materials for their ever increasing uses. Herein, we report a new and controllable fluoride treatment for the non-discriminate extraction of zeolite framework cations. This sheds new light on the sub-structure of commercially relevant zeolite crystals: they are segmented along defect zones exposing numerous nanometer-sized crystalline domains, separated by low-angle boundaries, in what were apparent single-crystals. The concentration, morphology, and distribution of such domains analyzed by electron tomography indicate that this is a common phenomenon in zeolites, independent of their structure and chemical composition. This is a milestone to better understand their growth mechanism and rationally design superior catalysts and adsorbents.

11.
Amino Acids ; 45(2): 403-6, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23744397

ABSTRACT

For the first, time a strong selectivity is evidenced in inorganic peptide synthesis. When an equimolar mixture of Ala and Arg monomers is added to the synthesis medium of TiO2 nanoparticles from Ti(IV) isopropoxide in benzyl alcohol, the Ala-Arg dipeptide is observed by ¹³C NMR in the resulting solid, at the exclusion of other dipeptides or higher peptides.


Subject(s)
Alanine/chemistry , Arginine/chemistry , Dipeptides/chemistry , Metal Nanoparticles/chemistry , Titanium/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Polymerization
12.
Phys Chem Chem Phys ; 15(32): 13371-80, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-23770974

ABSTRACT

It is well-known that amino acids deposited on some inorganic oxides undergo peptidic condensation. It is seldom realised however that a large diversity of behaviours can be observed in such systems. Here we use the apparently simple case of glycine-non-porous silica as a reference system, in which glycine (Gly) dimerisation to diketopiperazine (DKP) is easy to evidence, especially when using TG in combination with NMR. We then proceed to compare it with other AA deposited on the same support on the one hand, with Gly deposited on other mineral surfaces on the other hand. In a final section, we provide more detailed mechanistic information on the glycine condensation process on silica, including kinetic data and a (13)C solid-state NMR follow up of the species at various stages of thermal condensation. The best mechanism to rationalise these data involves a crucial step of isomerisation from zwitterion to neutral glycine, and the participation of several distinct types of surface sites probably consisting of silanol ensembles.


Subject(s)
Oxides/chemistry , Peptides/chemical synthesis , Adsorption , Catalysis , Diketopiperazines/chemistry , Glycine/chemistry , Magnetic Resonance Spectroscopy , Peptides/chemistry , Surface Properties
13.
Orig Life Evol Biosph ; 43(4-5): 429-43, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24277128

ABSTRACT

Many studies have reported condensation reactions of prebiotic molecules, such as the formation of peptide bonds between amino acids, to occur to some degree on mineral surfaces. We have studied several such reactions on the same divided silica. When drying steps are applied, the equilibria of peptide formation from glycine, and polyphosphate formation from monophosphate, are displaced to the right because these reactions are dehydrating condensations, accompanied by the emission of water. In contrast, the equilibrium of AMP dismutation is not significantly favored by drying. The silica surface plays little role (if any) in the thermochemistry of the condensation reactions, but is does play a significant kinetic role by acting as a catalyst, lowering the condensation temperatures with respect to bulk solids. Of course, the surface also catalyzes the inverse hydrolysis reactions.


Subject(s)
Peptides/chemical synthesis , Phosphates/chemical synthesis , Silicon Dioxide/chemistry , Evolution, Chemical , Glycine/chemistry , Magnetic Resonance Spectroscopy , Minerals/chemistry , Origin of Life , Peptides/chemistry , Phosphates/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Properties , Thermogravimetry
14.
PLoS One ; 18(7): e0287647, 2023.
Article in English | MEDLINE | ID: mdl-37437004

ABSTRACT

The material study of ancient Egyptian paintings began with the advent of Egyptology during the 19th century. By the 1930s, a lot had already been sampled and described. The limited palette for example has been analysed from actual painted surfaces but also from pigments and painting tools retrieved on site. However, most of these studies took place in museums while the painted surfaces, preserved in funerary chapels and temples, remained somewhat estranged from this primary physical understanding. The artistic process has been also reconstructed, mainly from the information presented by unfinished monuments, showing surfaces at different stages of completion. A lot of this modern and theoretical reconstruction is, however, based on the usual archaeological guessing game that aims at filling the remaining blanks. Our interdisciplinary project has decided to experiment on-site with state-of-the-art portable analysis tools, avoiding any physical sampling, to see if our knowledge of the work of the ancient Egyptian painters and draughtsmen could be taken at a further stage, while based on physical quantification that could be seen as a stronger and more reliable foundation for a redefined scientific hypothesis. The use of XRF mapping has, for instance, been applied to a known case of correction by surface repaint, something that is supposedly rare in the ancient Egyptian formal artistic process, while another fully unexpected one was discovered during the analytic exploration of a royal representation. In both cases, the precise and readable imaging of the physical composition of the painted surface offers a renewed visual approach based of chemistry, that can be shared through a multi- and interdisciplinary approach. However, this also leads to a more complex description of pigment mixtures that could have multiple meanings, where the practical often leads towards the symbolic, and from there hopefully to a renewed definition of the use of colours in complex sets of ancient Egyptian representations. At this stage, though the progress in this on-site material assessment of ancient works of art definitely means astonishing progress, one humbly has to face the fact that these ancient treasures shall still retain part of their defining mysteries.


Subject(s)
Paintings , Egypt , Paint , Archaeology , Head
15.
J Colloid Interface Sci ; 581(Pt B): 644-655, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32814188

ABSTRACT

HYPOTHESIS: The objective is to elucidate the multiscale dynamics of water within natural mixtures of minerals, green earth pigments that are mainly composed of phyllosilicates containing large amount of iron. In particular, the interaction of water with the different kinds of surfaces has to be probed. One issue is to examine the influence of surface type, basal or edge, on the dispersion quality. EXPERIMENT: The study was carried out using 1H variable field NMR relaxometry on various green earth pigment dispersions and concentrations. To analyse the data, a new analytical model was developed for natural phyllosilicates containing large amount of paramagnetic centres. FINDING: The proposed theoretical framework is able to fit the experimental data for various samples using few parameters. It allows to determining water diffusion and residence times in complex phyllosilicate dispersions. Furthermore, it makes it possible to differentiate the contribution of the basal and edge surfaces and their respective surface area in interaction with water. Moreover, NMR relaxation profile reveals to be highly sensitive to the structural aspect of the phyllosilicates and to the accessibility of water to iron, hence allowing to discriminate clearly between two very similar phyllosilicates (glauconite and celadonite) that are difficult to distinguish by standard structural methods.

16.
Colloids Surf B Biointerfaces ; 198: 111471, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33257159

ABSTRACT

Recently, zinc-based materials have gained immense attention as antimicrobial agents. In this study, zinc-doped mesoporous hydroxyapatites (HAps) with various Zn contents were prepared by co-precipitation using a phosphoprotein as the porous template. The use of the phosphoprotein as the porous template resulted in the formation of zinc-doped mesoporous HAps (mHAps) with large pores and specific surface area (182 m2 g-1), as indicated by the nitrogen adsorption/desorption measurements. The formation of the zinc-doped HAps was confirmed by various analytical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The biomaterials prepared in this study were used as antimicrobial agents against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The Zn2%-mHAp sample showed the maximum bacterial inhibitory concentrations of 50 ± 5% and 77 ± 5% for the Gram-positive and Gram-negative bacteria, respectively. The antibacterial activity of the mHAp samples depended strongly on their Zn2+ content. Thus, the use of a biotemplate and Zn2+ ions is an efficient approach for the formation of novel HAp-based biomaterials with promising antibacterial properties. This synthesis approach will pave a new pathway for the functionalization of other materials for different biomedical applications.


Subject(s)
Anti-Bacterial Agents , Hydroxyapatites , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Zinc
17.
Carbohydr Polym ; 236: 116036, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172852

ABSTRACT

Diclofenac sodium (DS) is an emergent pollutant, and among the methods investigated for its removal, adsorption is the most widely utilized technique. Hydroxyapatite and chitosan are biomaterials often used for adsorption. However, both biomaterials are limited due to their low chemical stability in an acidic medium; furthermore, pure hydroxyapatite interacts poorly with diclofenac. In this work, hydroxyapatite was organofunctionalized with 3-aminopropyltrimethoxysilane and further used to obtain amino hydroxyapatite /chitosan hybrids by crosslinking with glutaraldehyde at pH 3, 4, 5, and 6. X-ray diffraction patterns indicated the preservation of the hydroxyapatite phase under all pH conditions. Based on the control reaction of the amino hydroxyapatite with glutaraldehyde and its further reduction in sodium borohydride, the formation of CN moieties was highlighted as the main interaction mechanism between the aldehyde and amino groups. Therefore, crosslinking with glutaraldehyde was evaluated by infrared, Raman spectroscopy, and 13C NMR techniques; the results suggested contributions of imine formation and hydrogen bonding. The hybrid obtained at pH 3 exhibited an enhanced adsorption capacity of 125 mg g-1 at 15 min. The synergy between amino hydroxyapatite and chitosan crosslinked by glutaraldehyde was demonstrated.

18.
Data Brief ; 32: 106270, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32964083

ABSTRACT

The data presented here are related to the research paper entitled "Green Earth pigments dispersions: water dynamics at the interfaces". The nuclear magnetic resonance (NMR) relaxometry data are provided for various aqueous Green Earth (GE) pigments dispersions with volume fraction spanning approximately from 0.1 to 0.5. For two of them (Cyprus GE and Bohemian GE), the NMR relaxation profiles from 10 kHz to 30 MHz (1H frequency) is given for several temperatures spanning from 293 to 318K. In addition, the X-ray diffraction pattern is provided for France GE (Kremer pigments) for the identification of the main mineral component. The nitrogen gas isotherms are provided for Cyprus GE and Bohemian GE.

19.
J Am Chem Soc ; 131(45): 16580-6, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19848393

ABSTRACT

The use of organic structure directing agents in zeolite syntheses has dramatically extended the number of zeolite structure types during the past decades. However, for about 20% of all known zeolite structure types, the necessary postsynthesis elimination of organic templates by high-temperature combustion leads to structure collapse, where the particularly strongly affected are Ge-rich zeolites. Here, we present a treatment approach that leads to zeolite structure stabilization by postsynthetic isomorphous substitution of Al for Ge. An important advantage of this new method is that no preliminary elimination of the organic structure directing agent from zeolite pores is required; thus it can be applied to microporous materials that cannot withstand the high temperature combustion of organic templates. The experimental data unambiguously show that besides framework stabilization the postsynthesis treatment facilitates incorporation of active sites in the zeolite framework. The feasibility of this new approach is corroborated by alumination of a BEC-type material. The presented method is expected to broaden the practical utilization of many microporous materials by improving their thermal stability.

20.
Colloids Surf B Biointerfaces ; 176: 249-255, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30623812

ABSTRACT

Clay minerals are commonly used in pharmaceutical products as excipients and active agents. New drug vehicles based on clay minerals have been developed. In this work, sodium (BentNa), calcium (BentCa) and magnesium (BentMg) exchanged bentonites were used for the sorption of thiabendazole (TBZ), and their potential use as controlled release systems was evaluated. Pristine bentonite and exchanged bentonites were characterized by X-ray diffraction, infrared spectroscopy, thermogravimetry and transmission electron microscopy (TEM), and the influence of the different parameters such as pH, contact time and initial concentration of the drug was investigated. The maximum adsorption reached after 45 min period with 2000 mg L-1 of thiabendazole to BentNa and after 105 min with 1300 mg L-1 to BentCa and BentMg, respectively. The maximum adsorbed quantities of thiabendazole were 164.4; 152.3 and 133.3 mg g-1 for BentNa, BentCa and BentMg, respectively. The emission profiles obtained for the bentonite/drug hybrids were similar when simulated body fluids were used and these emission profiles were fitted according to the Korsmeyer-Peppas kinetic model.


Subject(s)
Bentonite/chemistry , Delayed-Action Preparations/pharmacology , Thiabendazole/chemistry , Adsorption , Drug Liberation , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Spectroscopy, Fourier Transform Infrared , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL