Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34996870

ABSTRACT

Fate and behavior of neural progenitor cells are tightly regulated during mammalian brain development. Metabolic pathways, such as glycolysis and oxidative phosphorylation, that are required for supplying energy and providing molecular building blocks to generate cells govern progenitor function. However, the role of de novo lipogenesis, which is the conversion of glucose into fatty acids through the multienzyme protein fatty acid synthase (FASN), for brain development remains unknown. Using Emx1Cre-mediated, tissue-specific deletion of Fasn in the mouse embryonic telencephalon, we show that loss of FASN causes severe microcephaly, largely due to altered polarity of apical, radial glia progenitors and reduced progenitor proliferation. Furthermore, genetic deletion and pharmacological inhibition of FASN in human embryonic stem cell-derived forebrain organoids identifies a conserved role of FASN-dependent lipogenesis for radial glia cell polarity in human brain organoids. Thus, our data establish a role of de novo lipogenesis for mouse and human brain development and identify a link between progenitor-cell polarity and lipid metabolism.


Subject(s)
Brain/metabolism , Fatty Acid Synthases/metabolism , Lipogenesis/physiology , Animals , Body Patterning , Brain/growth & development , Brain/pathology , Fatty Acid Synthase, Type I , Fatty Acid Synthases/genetics , Humans , Lipid Metabolism , Lipogenesis/genetics , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Neuroglia/metabolism , Neuroglia/pathology , Transcriptome
2.
J Immunol ; 208(7): 1802-1812, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35288470

ABSTRACT

NK cell receptors allow NK cells to recognize targets such as tumor cells. Many of them are expressed on a subset of NK cells, independently of each other, which creates a vast diversity of receptor combinations. Whether these combinations influence NK cell antitumor responses is not well understood. We addressed this question in the C57BL/6 mouse model and analyzed the individual effector response of 444 mouse NK cell subsets, defined by combinations of 12 receptors, against tumor cell lines originating from different tissues and mouse strains. We found a wide range of reactivity among NK subsets, but the same hierarchy of responses was observed for the different tumor types, showing that the repertoire of NK cell receptors does not encode for different tumor specificities but for different intrinsic reactivities. The coexpression of CD27, NKG2A, and DNAM-1 identified subsets with relative cytotoxic specialization, whereas reciprocally, CD11b and KLRG1 defined the best IFN-γ producers. The expression of educating receptors Ly49C, Ly49I, and NKG2A was also strongly correlated with IFN-γ production, but this effect was suppressed by unengaged receptors Ly49A, Ly49F, and Ly49G2. Finally, IL-15 coordinated NK cell effector functions, but education and unbound inhibitory receptors retained some influence on their response. Collectively, these data refine our understanding of the mechanisms governing NK cell reactivity, which could help design new NK cell therapy protocols.


Subject(s)
Interferon-gamma , Killer Cells, Natural , Animals , Cell Line, Tumor , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Receptors, Natural Killer Cell/metabolism
3.
Genome Res ; 30(11): 1643-1654, 2020 11.
Article in English | MEDLINE | ID: mdl-33122305

ABSTRACT

Currently, researchers rely on generalized methods to quantify transposable element (TE) RNA expression, such as RT-qPCR and RNA-seq, that do not distinguish between TEs expressed from their own promoter (bona fide) and TEs that are transcribed from a neighboring gene promoter such as within an intron or exon. This distinction is important owing to the differing functional roles of TEs depending on whether they are independently transcribed. Here we report a simple strategy to examine bona fide TE expression, termed BonaFide-TEseq. This approach can be used with any template-switch based library such as Smart-seq2 or the single-cell 5' gene expression kit from 10x, extending its utility to single-cell RNA-sequencing. This approach does not require TE-specific enrichment, enabling the simultaneous examination of TEs and protein-coding genes. We show that TEs identified through BonaFide-TEseq are expressed from their own promoter, rather than captured as internal products of genes. We reveal the utility of BonaFide-TEseq in the analysis of single-cell data and show that short-interspersed nuclear elements (SINEs) show cell type-specific expression profiles in the mouse hippocampus. We further show that, in response to a brief exposure of home-cage mice to a novel stimulus, SINEs are activated in dentate granule neurons in a time course that is similar to that of protein-coding immediate early genes. This work provides a simple alternative approach to assess bona fide TE transcription at single-cell resolution and provides a proof-of-concept using this method to identify SINE activation in a context that is relevant for normal learning and memory.


Subject(s)
Hippocampus/metabolism , RNA-Seq , Short Interspersed Nucleotide Elements , Single-Cell Analysis , Transcription, Genetic , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Hippocampus/cytology , Hippocampus/physiology , Mice , Promoter Regions, Genetic
4.
Blood ; 117(10): 2874-82, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21239699

ABSTRACT

Natural killer (NK) cells are innate immune cells that express members of the leukocyte ß2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that ß2 integrin-deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit(+) cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, ß2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Subject(s)
CD18 Antigens/immunology , CD18 Antigens/metabolism , Cell Differentiation/immunology , Killer Cells, Natural/immunology , Animals , Cell Separation , Flow Cytometry , Herpesviridae Infections/immunology , Killer Cells, Natural/cytology , Mice , Muromegalovirus/immunology
5.
Cell Stem Cell ; 28(5): 967-977.e8, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33631115

ABSTRACT

Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus. With advancing age, levels of neurogenesis sharply drop, which has been associated with a decline in hippocampal memory function. However, cell-intrinsic mechanisms mediating age-related changes in NSC activity remain largely unknown. Here, we show that the nuclear lamina protein lamin B1 (LB1) is downregulated with age in mouse hippocampal NSCs, whereas protein levels of SUN-domain containing protein 1 (SUN1), previously implicated in Hutchinson-Gilford progeria syndrome (HGPS), increase. Balancing the levels of LB1 and SUN1 in aged NSCs restores the strength of the endoplasmic reticulum diffusion barrier that is associated with segregation of aging factors in proliferating NSCs. Virus-based restoration of LB1 expression in aged NSCs enhances stem cell activity in vitro and increases progenitor cell proliferation and neurogenesis in vivo. Thus, we here identify a mechanism that mediates age-related decline of neurogenesis in the mammalian hippocampus.


Subject(s)
Aging , Lamin Type B , Neural Stem Cells , Progeria , Animals , Hippocampus/cytology , Mice , Neurogenesis
6.
Cell Stem Cell ; 28(11): 2020-2034.e12, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34525348

ABSTRACT

The division potential of individual stem cells and the molecular consequences of successive rounds of proliferation remain largely unknown. Here, we developed an inducible cell division counter (iCOUNT) that reports cell division events in human and mouse tissues in vitro and in vivo. Analyzing cell division histories of neural stem/progenitor cells (NSPCs) in the developing and adult brain, we show that iCOUNT can provide novel insights into stem cell behavior. Further, we use single-cell RNA sequencing (scRNA-seq) of iCOUNT-labeled NSPCs and their progenies from the developing mouse cortex and forebrain-regionalized human organoids to identify functionally relevant molecular pathways that are commonly regulated between mouse and human cells, depending on individual cell division histories. Thus, we developed a tool to characterize the molecular consequences of repeated cell divisions of stem cells that allows an analysis of the cellular principles underlying tissue formation, homeostasis, and repair.


Subject(s)
Neural Stem Cells , Animals , Brain , Cell Division , Cell Proliferation , Mice , Organoids , Sequence Analysis, RNA
7.
Nat Neurosci ; 24(2): 225-233, 2021 02.
Article in English | MEDLINE | ID: mdl-33349709

ABSTRACT

Neural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1). Through intravital imaging of NSCs and their progeny, we identify a population of Gli1-targeted NSCs showing long-term self-renewal in the adult hippocampus. In contrast, once activated, Ascl1-targeted NSCs undergo limited proliferative activity before they become exhausted. Using single-cell RNA sequencing, we show that Gli1- and Ascl1-targeted cells have highly similar yet distinct transcriptional profiles, supporting the existence of heterogeneous NSC populations with diverse behavioral properties. Thus, we here identify long-term self-renewing NSCs that contribute to the generation of new neurons in the adult hippocampus.


Subject(s)
Hippocampus/growth & development , Neural Stem Cells/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Female , Gene Expression Profiling , Hippocampus/cytology , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Intravital Microscopy , Male , Metallothionein 3 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Nerve Regeneration , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Single-Cell Analysis , Zinc Finger Protein GLI1/biosynthesis , Zinc Finger Protein GLI1/genetics
8.
STAR Protoc ; 1(2): 100081, 2020 09 18.
Article in English | MEDLINE | ID: mdl-33000004

ABSTRACT

This protocol presents a plate-based workflow to perform RNA sequencing analysis of single cells/nuclei using Smart-seq2. We describe (1) the dissociation procedures for cell/nucleus isolation from the mouse brain and human organoids, (2) the flow sorting of single cells/nuclei into 384-well plates, and (3) the preparation of libraries following miniaturization of the Smart-seq2 protocol using a liquid-handling robot. This pipeline allows for the reliable, high-throughput, and cost-effective preparation of mouse and human samples for full-length deep single-cell/nucleus RNA sequencing. For complete details on the use and execution of this protocol, please refer to Bowers et al. (2020).


Subject(s)
Sequence Analysis, RNA/instrumentation , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Animals , Base Sequence/genetics , Brain/cytology , Brain/metabolism , Cell Nucleus/metabolism , Cell Separation/methods , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Library , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Miniaturization , RNA/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Exome Sequencing/methods , Workflow
9.
Cell Stem Cell ; 27(1): 98-109.e11, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32386572

ABSTRACT

Altered neural stem/progenitor cell (NSPC) activity and neurodevelopmental defects are linked to intellectual disability. However, it remains unclear whether altered metabolism, a key regulator of NSPC activity, disrupts human neurogenesis and potentially contributes to cognitive defects. We investigated links between lipid metabolism and cognitive function in mice and human embryonic stem cells (hESCs) expressing mutant fatty acid synthase (FASN; R1819W), a metabolic regulator of rodent NSPC activity recently identified in humans with intellectual disability. Mice homozygous for the FASN R1812W variant have impaired adult hippocampal NSPC activity and cognitive defects because of lipid accumulation in NSPCs and subsequent lipogenic ER stress. Homozygous FASN R1819W hESC-derived NSPCs show reduced rates of proliferation in embryonic 2D cultures and 3D forebrain regionalized organoids, consistent with a developmental phenotype. These data from adult mouse models and in vitro models of human brain development suggest that altered lipid metabolism contributes to intellectual disability.


Subject(s)
Lipid Metabolism , Neural Stem Cells , Animals , Cell Proliferation , Fatty Acid Synthases , Hippocampus , Memory Disorders , Mice , Neurogenesis
10.
Nat Neurosci ; 22(2): 243-255, 2019 02.
Article in English | MEDLINE | ID: mdl-30617258

ABSTRACT

Autism spectrum disorder (ASD) is thought to emerge during early cortical development. However, the exact developmental stages and associated molecular networks that prime disease propensity are elusive. To profile early neurodevelopmental alterations in ASD with macrocephaly, we monitored subject-derived induced pluripotent stem cells (iPSCs) throughout the recapitulation of cortical development. Our analysis revealed ASD-associated changes in the maturational sequence of early neuron development, involving temporal dysregulation of specific gene networks and morphological growth acceleration. The observed changes tracked back to a pathologically primed stage in neural stem cells (NSCs), reflected by altered chromatin accessibility. Concerted over-representation of network factors in control NSCs was sufficient to trigger ASD-like features, and circumventing the NSC stage by direct conversion of ASD iPSCs into induced neurons abolished ASD-associated phenotypes. Our findings identify heterochronic dynamics of a gene network that, while established earlier in development, contributes to subsequent neurodevelopmental aberrations in ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Gene Regulatory Networks , Inhibitory Postsynaptic Potentials/physiology , Nerve Net/physiopathology , Neurons/physiology , Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Humans , Induced Pluripotent Stem Cells/pathology , Neural Stem Cells/pathology , Neurons/pathology
11.
Mol Aspects Med ; 61: 50-62, 2018 06.
Article in English | MEDLINE | ID: mdl-29117513

ABSTRACT

Flavonoids are a class of plant-derived dietary polyphenols that have attracted attention for their pro-cognitive and anti-inflammatory effects. The diversity of flavonoids and their extensive in vivo metabolism suggest that a variety of cellular targets in the brain are likely to be impacted by flavonoid consumption. Initially characterized as antioxidants, flavonoids are now believed to act directly on neurons and glia via the interaction with major signal transduction cascades, as well as indirectly via interaction with the blood-brain barrier and cerebral vasculature. This review discusses potential mechanisms of flavonoid action in the brain, with a focus on two critical transcription factors: cAMP response element-binding protein (CREB) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). To advance beyond current understanding of cellular targets, critical bioavailability studies need to be performed to verify the identity and concentration of flavonoid metabolites reaching the brain after ingestion and to validate that these metabolites are produced not just in rodent models but also in humans. Recent advances in human induced pluripotent stem cell (iPSC) differentiation protocols to generate human neuronal and glial cell types could also provide a unique tool for clinically relevant in vitro investigation of the mechanisms of action of bioavailable flavonoid metabolites in humans.


Subject(s)
Diet , Flavonoids/pharmacology , Inflammation/pathology , Neurons/metabolism , Animals , Brain/drug effects , Brain/metabolism , Humans , Neurons/drug effects , Signal Transduction/drug effects
12.
Nat Commun ; 9(1): 3084, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082781

ABSTRACT

Activity-induced remodeling of neuronal circuits is critical for memory formation. This process relies in part on transcription, but neither the rate of activity nor baseline transcription is equal across neuronal cell types. In this study, we isolated mouse hippocampal populations with different activity levels and used single nucleus RNA-seq to compare their transcriptional responses to activation. One hour after novel environment exposure, sparsely active dentate granule (DG) neurons had a much stronger transcriptional response compared to more highly active CA1 pyramidal cells and vasoactive intestinal polypeptide (VIP) interneurons. Activity continued to impact transcription in DG neurons up to 5 h, with increased heterogeneity. By re-exposing the mice to the same environment, we identified a unique transcriptional signature that selects DG neurons for reactivation upon re-exposure to the same environment. These results link transcriptional heterogeneity to functional heterogeneity and identify a transcriptional correlate of memory encoding in individual DG neurons.


Subject(s)
Dentate Gyrus/metabolism , Gene Expression Regulation , Memory , Neurons/metabolism , Transcription, Genetic , Animals , CA1 Region, Hippocampal/cytology , Cytoplasmic Granules , Female , Gene Expression Profiling , Interneurons , Mice , Mice, Inbred C57BL , Models, Neurological , Neurogenesis , Neuronal Plasticity , Pyramidal Cells/metabolism , Stochastic Processes , Time Factors , Vasoactive Intestinal Peptide/metabolism
13.
Cell Rep ; 23(9): 2550-2558, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29847787

ABSTRACT

Mitochondria are a major target for aging and are instrumental in the age-dependent deterioration of the human brain, but studying mitochondria in aging human neurons has been challenging. Direct fibroblast-to-induced neuron (iN) conversion yields functional neurons that retain important signs of aging, in contrast to iPSC differentiation. Here, we analyzed mitochondrial features in iNs from individuals of different ages. iNs from old donors display decreased oxidative phosphorylation (OXPHOS)-related gene expression, impaired axonal mitochondrial morphologies, lower mitochondrial membrane potentials, reduced energy production, and increased oxidized proteins levels. In contrast, the fibroblasts from which iNs were generated show only mild age-dependent changes, consistent with a metabolic shift from glycolysis-dependent fibroblasts to OXPHOS-dependent iNs. Indeed, OXPHOS-induced old fibroblasts show increased mitochondrial aging features similar to iNs. Our data indicate that iNs are a valuable tool for studying mitochondrial aging and support a bioenergetic explanation for the high susceptibility of the brain to aging.


Subject(s)
Aging/pathology , Cellular Reprogramming , Metabolomics , Mitochondria/metabolism , Neurons/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Cell Differentiation , Cells, Cultured , Child , Child, Preschool , Fibroblasts/cytology , Gene Expression Regulation , Genes, Mitochondrial , Humans , Infant , Infant, Newborn , Middle Aged , Oxidative Phosphorylation , Phenotype , Tissue Donors , Young Adult
14.
Science ; 356(6344)2017 06 23.
Article in English | MEDLINE | ID: mdl-28546318

ABSTRACT

Microglia play essential roles in central nervous system (CNS) homeostasis and influence diverse aspects of neuronal function. However, the transcriptional mechanisms that specify human microglia phenotypes are largely unknown. We examined the transcriptomes and epigenetic landscapes of human microglia isolated from surgically resected brain tissue ex vivo and after transition to an in vitro environment. Transfer to a tissue culture environment resulted in rapid and extensive down-regulation of microglia-specific genes that were induced in primitive mouse macrophages after migration into the fetal brain. Substantial subsets of these genes exhibited altered expression in neurodegenerative and behavioral diseases and were associated with noncoding risk variants. These findings reveal an environment-dependent transcriptional network specifying microglia-specific programs of gene expression and facilitate efforts to understand the roles of microglia in human brain diseases.


Subject(s)
Environment , Gene Regulatory Networks/physiology , Microglia/cytology , Microglia/physiology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/physiopathology , Cells, Cultured , Epilepsy/genetics , Epilepsy/physiopathology , Female , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL
15.
Stem Cell Reports ; 8(6): 1757-1769, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28591655

ABSTRACT

Astrocyte dysfunction and neuroinflammation are detrimental features in multiple pathologies of the CNS. Therefore, the development of methods that produce functional human astrocytes represents an advance in the study of neurological diseases. Here we report an efficient method for inflammation-responsive astrocyte generation from induced pluripotent stem cells (iPSCs) and embryonic stem cells. This protocol uses an intermediate glial progenitor stage and generates functional astrocytes that show levels of glutamate uptake and calcium activation comparable with those observed in human primary astrocytes. Stimulation of stem cell-derived astrocytes with interleukin-1ß or tumor necrosis factor α elicits a strong and rapid pro-inflammatory response. RNA-sequencing transcriptome profiling confirmed that similar gene expression changes occurred in iPSC-derived and primary astrocytes upon stimulation with interleukin-1ß. This protocol represents an important tool for modeling in-a-dish neurological diseases with an inflammatory component, allowing for the investigation of the role of diseased astrocytes in neuronal degeneration.


Subject(s)
Astrocytes/cytology , Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Stem Cells/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Coculture Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glutamic Acid/metabolism , Humans , Hyaluronan Receptors/metabolism , Induced Pluripotent Stem Cells/metabolism , Interleukin-1beta/pharmacology , Leukemia Inhibitory Factor/pharmacology , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Principal Component Analysis , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Stem Cells/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/pharmacology
16.
Nat Commun ; 7: 11022, 2016 04 19.
Article in English | MEDLINE | ID: mdl-27090946

ABSTRACT

Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo.


Subject(s)
Neurons/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Transcriptome , Animals , Cell Nucleus/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Gene Ontology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Immunohistochemistry , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
17.
Article in English | MEDLINE | ID: mdl-22383753

ABSTRACT

A major challenge for the immune system is to control pathogens and stressed cells, such as infected or tumors cells, while sparing healthy self-cells. To achieve this tolerance to self, immune cells must recognize and differentiate "self" versus "nonself" and "self" versus "altered self." In the absence of self-tolerance, cells of the adaptive immune system attack healthy cells and cause autoimmune diseases such as lupus, psoriasis, and type I diabetes. Mechanisms at work to ensure tolerance in the innate immune system are still poorly understood. Natural killer cells are innate immune lymphocytes, which have the capacity to kill cellular targets and produce cytokines without prior specific sensitization. Because of these intrinsic effector capacities, tolerance mechanisms must exist to prevent autoreactivity. Herein, we will review the present knowledge on NK cell tolerance.


Subject(s)
Killer Cells, Natural/immunology , Self Tolerance/physiology , Animals , Humans , Major Histocompatibility Complex/physiology , Mice , Models, Immunological , Receptors, Immunologic/physiology
18.
J Clin Invest ; 122(9): 3053-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22863616

ABSTRACT

Cells of the immune system have evolved various molecular mechanisms to sense their environment and react to alterations of self. NK cells are lymphocytes with effector and regulatory functions, which are remarkably adaptable to changes in self. In a study published in this issue of the JCI, Tarek and colleagues report the clinical benefits of manipulating NK cell adaptation to self in an innovative mAb-based therapy against neuroblastoma (NB). This novel therapeutic strategy should stimulate further research on NK cell therapies.

19.
Nat Neurosci ; 20(10): 1319-1321, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28949331

Subject(s)
Cerebellum , Neurons , Brain , Nestin
20.
J Exp Med ; 209(3): 565-80, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22393124

ABSTRACT

Natural killer (NK) cells are bone marrow (BM)-derived granular lymphocytes involved in immune defense against microbial infections and tumors. In an N-ethyl N-nitrosourea (ENU) mutagenesis strategy, we identified a mouse mutant with impaired NK cell reactivity both in vitro and in vivo. Dissection of this phenotype showed that mature neutrophils were required both in the BM and in the periphery for proper NK cell development. In mice lacking neutrophils, NK cells displayed hyperproliferation and poor survival and were blocked at an immature stage associated with hyporesponsiveness. The role of neutrophils as key regulators of NK cell functions was confirmed in patients with severe congenital neutropenia and autoimmune neutropenia. In addition to their direct antimicrobial activity, mature neutrophils are thus endowed with immunoregulatory functions that are conserved across species. These findings reveal novel types of cooperation between cells of the innate immune system and prompt examination of NK cell functional deficiency in patients suffering from neutropenia-associated diseases.


Subject(s)
Killer Cells, Natural/immunology , Neutropenia/immunology , Neutrophils/immunology , Adult , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Case-Control Studies , Cell Differentiation , Child , Child, Preschool , Female , Homeostasis , Humans , Immunity, Innate , Infant , Killer Cells, Natural/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Middle Aged , Neutropenia/congenital , Neutropenia/pathology , Neutrophils/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL